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Abstract 
This paper focuses on “human-compatible AI” which aligns 
with human values and remains under human control to pre-
vent unintended and harmful consequences, and discusses it 
to develop human-compatible AI for well-being. For this is-
sue, this paper proposes the human-compatible AI for a sleep 
as one of the human-compatible AI for well-being, which is 
designed to have the functions of (1) checking how the esti-
mated sleep stage (corresponding to suggestions to users) fol-
lows the biological rhythms which determine their health 
conditions (corresponding to human values) and (2) modify-
ing the estimated sleep stage according to their biological 
rhythms. To investigate an importance of the proposed ap-
proach, this paper applies it into the sleep stage estimation 
based on the acceleration sensor data. Through the human 
subject experiment, the following implications have been re-
vealed: (1) it is dangerous to simply employ machine learning 
(i.e., Random Forest in this research) for the sleep stage esti-
mation because the sleep stage is artificially estimated with-
out following the ultradian rhythm which are generally found 
in humans; and (2) it is important to integrate the physiolog-
ical characteristic (i.e., the ultradian rhythm) with machine 
learning for the sleep stage estimation because such an inte-
gration can estimate the sleep stage that follow the ultradian 
rhythm. 

Introduction  
On April 2nd, 2024, WHO (Would Health Organization) an-
nounced to release S.A.R.A.H. (a Smart AI Resource Assis-
tant for Health), which is the digital health promoter proto-
type with enhanced empathetic response powered by gener-
ative artificial intelligence (AI) (WHO 2020a). S.A.R.A.H. 
is developed as the AI health information avatar which aims 
at providing information across major health topics, includ-
ing healthy habits and mental health, through a conversation 
between the S.A.R.A.H. avatar and a user (WHO 2020b). In 
particular, S.A.R.A.H. can provide tips to destress, eat right, 
quit tobacco and e-cigarettes, as well as give information on 
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several other health topics, in order to help users to manage 
and optimize his/her health. 
 However, S.A.R.A.H. cannot guarantee to always provide 
the correct or appropriate information/suggestions for the 
users who ask for advices of their good health, i.e., it may 
provide the wrong or inappropriate answers to users. This is 
a serious problem because such information/suggestions af-
fect their health even though humans easily believe the out-
puts generated by AI that contains false or misleading infor-
mation presented as fact (known as “hallucination”) or hu-
mans easily rely only on the first AI recommendation and 
not to explore alternatives (known as “anchoring bias”). 
More importantly, this problem is very hard to be avoided 
because the definition of the “good health” is ambiguous, 
which makes it difficult for users to judge whether the out-
puts generated by AI is correct/appropriate or wrong/inap-
propriate. Furthermore, even if such information/sugges-
tions are useful, they cannot guarantee to always derive 
good health “every day,” e.g., they may be useful most day 
but not in a certain day, or they may be useful in a certain 
day but not in other days. Since they are partially correct or 
appropriate, such answers also resulting in unconscious be-
lieve or reliance of them. It goes without saying that this sit-
uation gets worse when a quality of the answers increases 
by becoming the current AI to superintelligent through a 
self-learning of data in the world. 
 For this issue, Russell proposed “human-compatible AI” 
(Russell 2019) which aligns with human values and remains 
under human control to prevent unintended and harmful 
consequences. As the main point of human-compatible AI, 
an objective of AI should remain uncertain unlike an objec-
tive of an agent in the conventional AI is rigid and certain. 
This is because such uncertainty makes it hard for AI to ex-
ecute concrete actions according to the uncertain objective, 
which gives a chance for AI to learn human values by ob-
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serving human behaviors. This process contributes to pre-
venting misunderstandings of human values, which should 
be maximized as the true objective of AI. 
 From this viewpoint, the objective of deriving good 
health is uncertain because we do not clearly know how to 
achieve it. This uncertainty is a good characteristic to de-
velop human-compatible AI for well-being. However, both 
S.A.R.A.H. and the current generative AI such as Large 
Language Models (LLMs) (Wei et al. 2022) do not under-
stand human values but simply predicts the next tokens 
(which is a minimum unit of sentences) estimated by the 
transformer technology (Vaswani 2017). This means that 
S.A.R.A.H. and the generative AI always provides some 
suggestions when asking for advices of their good health 
without checking whether the given suggestions satisfy hu-
man values. This is the significant problem because appro-
priate suggestions generally depend on human values on 
good health (e.g., a sleep is a concern of some persons, while 
nutrition of meals is a concern of other persons). For this 
issue, human-compatible AI for well-being should design 
S.A.R.A.H. or the generative AI to have the functions of (1) 
checking how the suggestions satisfy human values of users 
and (2) modifying suggestions according to their values.  

Towards such human-compatible AI, this paper starts to 
address a sleep stage estimation from biological data such 
as heartrate, respiration, and body movement by using ma-
chine learning technologies, while checking how the esti-
mated sleep stage follows the “biological rhythms”. What 
should be noted, here, is that the biological rhythms are not 
human values but the output of machine learning should fol-
low the biological rhythms when providing it as the sugges-
tion for human health because the biological rhythms affect 
our health conditions. For example, health condition is gen-
erally good/bad when an “ultradian rhythm” (i.e., approxi-
mately 90 minutes rhythm) as one of biological rhythms of 
humans is stable/unstable. Since good health (caused by the 
stable ultradian rhythm) increases human values, this paper 
roughly regards “a follow of a biological rhythm” as “a sat-
isfaction of human values.” From this viewpoint, the sleep 
stage estimated by machine learning without checking how 
the estimated sleep stage follows a biological rhythm is dan-
gerous because it may provide wrong/inappropriate message. 
To overcome this issue, this paper proposes the human-com-
patible AI for a sleep as one of the human-compatible AI for 
well-being, which is designed to have the functions of (1) 
checking how the estimated sleep stage (corresponding to 
suggestions to users) follows the biological rhythm (corre-
sponding to human values) and (2) modifying the estimated 
sleep stage according to their biological rhythm. 
 This paper is organized as follows. The next section in-
troduces human-compatible AI. After Section 3 explains the 
biological rhythm and sleep stage, Section 4 conducts the 
human subject experiments and discusses the results in Sec-
tion 5. Finally, our conclusion is given in Section 6. 

Human-Compatible AI 

Conventional AI  
The conventional AI is generally executed according to 
given human-specified goals, but such goals may not reflect 
an intention of humans. For this issue, Russell in his TED 
talk introduced “the off-switch problem”, which argues 
whether a machine (AI) let us switch it off, using the exam-
ple of the robot which is asked to fetch a coffee as the given 
objective (Russell 2017). The standard robot may think as 
follows. 
 

Robot: “I must fetch a coffee.” 
Robot: “I can’t fetch a coffee when I’m dead.” 
Robot: “Therefore, I must disable my off-switch.” 
 
Such an unexpected outcome comes from the certain ob-

jective, meaning that any human values are not included in 
the objectives.  

Human-Compatible AI and Three Principles 
To overcome the problem of the conventional AI which is 
based on certain objective, Russell proposed “human-com-
patible AI” (Russell 2019) which is based on the uncertain 
objective. Concretely, human-compatible AI would have the 
true objective remain uncertain, which encourages AI for 
cooperation and communication with humans to increase 
certainty about it by gaining more information about human 
values. Such human-compatible AI provides us the provably 
beneficial machines that focus on deference to humans. For 
this issue, the following three principles are important (note 
that the term “preference” is employed in the original defi-
nition instead of “value” which is employed in the TED talk). 

1. The machine's only objective is to maximize the reali-
zation of human values. 

2. The machine is initially uncertain about what those val-
ues are. 

3. The ultimate source of information about human values 
is human behavior. 

Ultradian Rhythm and Sleep Stage 

Ultradian Rhythm 
The biological rhythm in human body is composed of a lot 
of rhythms, e.g., a month rhythm as a circalunar rhythm, a 
weak rhythm as a circaseptan rhythm, 24 hours rhythm as a 
circadian rhythm, and 90 minutes rhythm as an ultradian 
rhythm). Although all of rhythms affect health conditions, 
an ultradian rhythm is focused on because of the following 
reasons: (1) the health condition of one day is generally use-
ful than that of week and month, which means that the cir-
cadian or ultradian rhythm become the candidates; (2) the 
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ultradian rhythm can be found during sleep (i.e., the deep 
and light sleep are continuously repeated in a cycle from 60 
to 120 minutes) while the circadian rhythm cannot be found 
during sleep, and the nighttime biological data is more stable 
due to less activity than the daytime data, which contributes 
to decreasing the difficulty of estimating an ultradian 
rhythm from the sleep stage.  

Sleep Stage 
The sleep stage is an indicator of the depth of sleep, which 
is defined by the R&K method (Rechtschaffen and Kales 
1968) based on electrooculogram (EEG), electromyogram 
(EMG), and electrooculogram (EOG) acquired during sleep. 
Concretely, the sleep stages are divided into five stages, i.e., 
the wake stage, the REM sleep stage, and the Non-REM 
sleep stages 1, 2, and 3, represented by WAKE, REM, 
NREM1, NREM2, and NREM3, respectively. As shown in 
Figure 1 where the horizontal axis indicates the sleep time 
in a bed while the vertical axis indicates the sleep stage, 
WAKE is the lightest sleep while NREM3 is the deepest 
sleep. Note that NREM3 and NREM4 are merged into one 
stage (as NREM3) according to the American Academy of 
Sleep Medicine (AASM) scoring manual (Berry et al. 2012). 
The five sleep stages are determined with an interval of the 
1 epoch (i.e., the 30 seconds) by the human experts. 
 

 
Figure 1: Sleep stage 

Sleep Stage Estimation Based on Ultradian 
Rhythm 

Our previous research (Shintani et al. 2024a; 2024b) devel-
oped the sleep stage estimation for the simple acceleration 
sensor. Unlike many conventional methods of the sleep 
stage estimations based on an acceleration sensor (Boe et al. 
2019; Sundararajan et al. 2021; Gu et al. 2014), our pro-
posed method does not simply employ machine learning or 
improves it, but indirectly taking account of the ultradian 
rhythm when estimating the sleep stage by machine learning. 
For this issue, our proposed method starts to (i) determines 
the epochs of WAKE, followed by determining the epochs 
of NREM3 (Shintani et al. 2024a) and REM (Shintani et al. 

2024b) in turn, which means that the sleep stage is estimated 
under the priority of WAKE > NREM3 > REM; and then 
(2) the sleep stage of the remaining epochs is determined as 
NREM1 and 2. Furthermore, REM and NREM3 are esti-
mated by checking both of them follows the ultradian 
rhythm. Concretely, the estimated REM and NREM3 which 
follow the ultradian rhythm are remained while those which 
do not follow it are changed to other sleep stages, i.e., 
NREM3 may be changed to REM or NREM1 and 2 while 
REM may be changed to NREM 1 and 2 under the priority 
of WAKE > NREM3 > REM > NREM 1 and 2. What should 
be noted here is that (i) the approach of “firstly” determining 
WAKE and REM as the light sleep and NREM3 as the deep 
sleep contributes to emphasizing the light and deep sleep, 
i.e., the ultradian rhythm; and (ii) the approach of estimating 
only REM and NREM3 which follow the ultradian rhythm 
contributes to taking account of the ultradian rhythm. 

Human Subject Experiment 

Experimental Setup 
To investigate an influence of taking account of the ultradian 
rhythm when estimating the sleep stage, the human subject 
experiment was conducted with the approval of the ethics 
community of Ota General Hospital for this study in agree-
ment with Helsinki’s declaration. Through this experiment, 
the 35 whole nights sensor data of the healthy human sub-
jects were obtained, where their ages are ranged from 20’s 
to 60’s including both genders. 

As the acceleration sensor, this paper employs the coin-
shaped sensor (BRAIN SLEEP COIN, Brain Sleep Co. Ltd.) 
attached to a nightwear around waist, meaning that the sleep 
stage can be estimated without connecting any devices to 
human's body. The sleep stage is estimated from the biolog-
ical vibration data acquired from the coin-shaped sensor, 
which measures the following data: (i) the norm data of ac-
celeration with a sampling rate of 10 Hz, (ii) the z-axis data 
of acceleration with a sampling rate of 1 Hz (1: face up, 0: 
sideways, -1: face down), and (iii) the temperature with a 
sampling rate of 1 Hz. Among these data, the norm and z-
axis of acceleration are employed in the experiment. In ad-
dition to the “estimated” sleep stage based on the biological 
vibration data of the coin-shaped sensor, the “correct” sleep 
stage was obtained through the PSG (polysomnography) test 
based on the EEG, EOG, and EMG data.  

Evaluation Criterion and Parameter Setting 
The experiment employs the leave-one-out cross-validation, 
where the model is trained on the 34 nights data and evalu-
ated on the other night. As the evaluation criterion, an accu-
racy between the estimated sleep stage and the correct sleep 
stage of the PSG test is employed. 
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 To clarify an influence of the ultradian rhythm, the sleep 
stage estimated by our previous method is compared with 
that by Random Forest (RF) (Breiman, 2001) as one of the 
major machine learning methods. RF is an ensemble learn-
ing method composed of the multiple decision trees as a 
weak classifier and determines the output (i.e., the classifi-
cation result) by the majority vote of the classification re-
sults of the decision trees. The parameters of RF were set as 
follows: (i) the maximum depth of the decision tree is 10; 
and (ii) the number of decision trees is 100. Note that the 
four stages (WAKE, REM, NREM1 and 2, NREM3) where 
NREM1 is merged with NREM2 are employed instead of 
the five stages in this experiment because of the following 
reasons: (1) the ratio of NREM1 is smaller than that of 
NREM2; and (2) its merger contributes to increasing the ac-
curacy of the WAKE, REM and NREM3 in the four stages 
(i.e., the three stages estimation out of the four stages) in 
comparison with that in the five stages (i.e., the three stages 
estimation out of the five stages). This means that the merg-
ing NREM1 with NREM2 gives an advantage to RF in terms 
of estimating the sleep stage which shows the ultradian 
rhythm. For the training of RF, all data of WAKE, REM and 
NREM3 are employed as the training data while the 50% 
data of NREM 1 and 2 which are randomly selected from all 
data of NREM 1 and 2 are employed as the training data. 
This is because an amount of the data of NREM 1 and 2 is 
quite larger than that of WAKE, REM and NREM3 in the 
original data, i.e., the ratio of the data of NREM 1 and 2 is 
more than 50 %. 

Experimental Result 
Figure 2 shows the accuracy of the sleep stages estimated by 
RF and the proposed method, where the horizontal axis in-
dicates the 35 subjects with their average while the vertical 
axis indicates the accuracy of the sleep stage. In this figure, 
the blue and orange bars indicate the accuracy of the sleep 
stages estimated by RF and that by the proposed method, 
respectively. When focusing on the averaged accuracy, both 
accuracies of the sleep stages estimated by RF (64.2%) and 

the proposed method (65.1%) are very similar. This ten-
dency can be found in the accuracy in each subject, even 
though the accuracy of RF is higher/lower than that of the 
proposed method in some subjects. From the viewpoint of 
statistical analysis, Wilcoxon signed-rank test shows that the 
p values of the averaged accuracies of the sleep stages esti-
mated by RF and the proposed method is 0.69, meaning that 
no significant difference is found. 
 To investigate an influence of taking account of the ultra-
dian rhythm, Figure 3 shows the sleep stages of the subject 
A, where the horizontal axis indicates the sleep time in a bed 
while the vertical axis indicates the sleep stage. In detail, the 
upper, middle, and lower graphs indicate the sleep stages of 
RF, PSG, and the proposed method, respectively. The red 
circle and the black cross mark indicate the correct and 
wrong estimation of WAKE, REM, and NREM3, respec-
tively. The light red bars are the period of the correct esti-
mation of WAKE, REM, and NREM3. Here, the sleep stage 
of the subject A is employed because the accuracies of RF 

Figure 2: Accuracy of the sleep stages estimated by RF and the proposed method 

Figure 3: Sleep stages of Subject A by RF, PSG, and   
the proposed method) 
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(65.93%) and the proposed (65.69%) are mostly the same 
from Figure 2. However, Figure 3 clearly shows the differ-
ent sleep stages of RF and the proposed method. Concretely, 
NREM3 are not found in the sleep stage of RF but found in 
that of the proposed method, and many WAKEs and REMs 
are wrongly estimated by RF while all WAKEs and some 
REMs are correctly estimated by the proposed method. 
These results suggest that the sleep stage of RF does not fol-
low the ultradian rhythm due to no cycle of the light (i.e., 
(the correct) WAKE and REM) and deep (i.e., NREM3) 
sleep while that of the proposed method roughly follow the 
ultradian rhythm due to a cycle of the light and deep sleep 
even though the periods of the light and deep sleep are not 
perfectly the same. 

Discussions 

Why Is Ultradian Rhythm Needed To Estimate 
Sleep Stage? 
Even though the sleep stage of RF is different that the pro-
posed method as shown in Figure 3, both accuracies of the 
sleep stage are mostly the same, because of the following 
reasons: (1) RF aims to minimize a difference of the sleep 
stage of RF and PSG, which promotes RF to learn NREM1 
and 2 preferentially because the ratio of NREM 1 and 2 is 
larger than that of others (i.e., its ratio is more than 50% of 
a sleep time). From this reason, the sleep stage estimated by 
RF is mostly NREM1 and 2 without estimating REM and 
NREM3; (2) The proposed method takes account of the ul-
tradian rhythm when estimating NREM3 and REM, and it 
estimates the sleep stage under the priority of WAKE > 
NREM3 > REM > NREM1 and 2, which contributes to em-
phasizing the light sleep (i.e., WAKE and REM) and deep 
(i.e., NREM3) sleep. From this reason, the sleep stage esti-
mated by the proposed method roughly follows the ultradian 
rhythm. 

Evaluating Sleep Stage From Weighted Kappa 
Since it is difficult to show the difference of RF and the pro-
posed method (i.e., RF mainly estimates NREM1 and 2, 
while the proposed method estimates the four stages) from 
the viewpoint of the accuracy of the sleep stage, the 
weighted kappa is focused on because its criterion can eval-
uate a degree of the difference between the sleep stages (e.g., 
the difference between WAKE and NREM3 is larger than 
that between REM and NREM1 and 2). Employing this cri-
terion, Figure 4 shows the weighted kappa of the sleep 
stages estimated by RF and the proposed method, where the 
horizontal axis indicates the 35 subjects with their average 
while the vertical axis indicates the accuracy of the sleep 
stage. In this figure, the blue and orange bars indicate the 
weighted kappa of the sleep stages estimated by RF and that 
by the proposed method, respectively. When focusing on the 
averaged weighted kappa, the value of the proposed method 
(32.4%) is larger than that of RF (19.2%). This tendency can 
be found in the weighted kappa in each subject except for 
the subjects E, U, and a. From the viewpoint of statistical 
analysis, Wilcoxon signed-rank test shows that the p values 
of the averaged weighted kappa of the sleep stages estimated 
by RF and the proposed method is 2.04 × 10−6, meaning 
that the significant difference is found.  
 This analysis has revealed the following implications: (1) 
it is dangerous to simply employ machine learning (i.e., RF 
in this research) for the sleep stage estimation because the 
sleep stage is artificially estimated without following the ul-
tradian rhythm which are generally found in humans; and 
(2) it is important to integrate the physiological characteris-
tic (i.e., the ultradian rhythm) with machine learning for the 
sleep stage estimation because such an integration can esti-
mate the sleep stage that follow the ultradian rhythm. 

Conclusion 
This paper focused on human-compatible AI and discussed 
it to develop human-compatible AI for well-being. For this 

Figure 4: Weighted kappa of the sleep stages estimated by RF and the proposed method 
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issue, this paper focused on an ultradian rhythm and pro-
posed the human-compatible AI for a sleep as one of the hu-
man-compatible AI for well-being, which is designed to 
have the functions of (1) checking how the estimated sleep 
stage follows the biological rhythms which determine their 
health conditions and (2) modifying the estimated sleep 
stage according to their biological rhythms. To investigate 
an importance of the proposed approach, this paper applies 
it into the sleep stage estimation based on the acceleration 
sensor data. The human subject experiment has revealed the 
following implications: (1) it is dangerous to simply employ 
machine learning (i.e., RF in this research) because machine 
learning artificially provides the output which does not fol-
low the physiological characteristics which are generally 
found in humans; and (2) it is important to integrate the 
physiological characteristic (i.e., the ultradian rhythm) with 
machine learning because such an integration can provides 
the output which follows the physiological characteristics. 
rhythm. 
 What should be noticed here is that this paper takes just 
one step for developing human-compatible AI for well-be-
ing, therefore the next step must be pursued in the near fu-
ture in addition to (1) applying the proposed approach to 
S.A.R.A.H. and the generative AI; and (2) exploring the cri-
terion of measuring the uncertainty from viewpoint of the 
ultradian rhythm. 
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