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Abstract

This paper presents AI Guide Dog (AIGD), a lightweight
egocentric (first-person) navigation system for visually im-
paired users, designed for real-time deployment on smart-
phones. AIGD employs a vision-only multi-label classifica-
tion approach to predict directional commands, ensuring safe
navigation across diverse environments. We introduce a novel
technique for goal-based outdoor navigation by integrating
GPS signals and high-level directions, while also handling
uncertain multi-path predictions for destination-free indoor
navigation. As the first navigation assistance system to handle
both goal-oriented and exploratory navigation across indoor
and outdoor settings, AIGD establishes a new benchmark in
blind navigation. We present methods, datasets, evaluations,
and deployment insights to encourage further innovations in
assistive navigation systems.

Introduction
Navigation assistance systems for visually impaired indi-
viduals have been studied for several decades (Dakopoulos
and Bourbakis 2010), yet their widespread adoption remains
limited due to (1) reliance on expensive, custom-built de-
vices, (2) the lack of efficient, robust models that ensure user
safety, and (3) limited user trust and convenience.

Existing systems often rely on expensive devices with
built-in sensors like LiDAR, or laser scanners (Wang et al.
2017; Wachaja et al. 2015; Hesch and Roumeliotis 2010),
for 3D mapping, or IMUs, gyroscopes, and pedometers (Lee
and Medioni 2014; Hesch and Roumeliotis 2010) for local-
izing user position and orientation. While accurate, these
systems are bulky and prohibitively expensive, limiting their
accessibility. To address these challenges, we propose a
lightweight system leveraging only video feed from a smart-
phone camera. An on-device model generates navigation in-
structions in real-time, that are translated into audio cues for
the blind user. This facilitates accessibility and ease of adop-
tion while maintaining robust performance.

Most prior work (Wang, Liu, and Kennedy 2024; Qiu
et al. 2022; Soo Park et al. 2016; Yagi et al. 2018) on blind
navigation formulates it as a trajectory forecasting problem,
predicting precise 3D positions of the user. However, this
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approach typically reflects the behavior of sighted individ-
uals, who navigate by dynamically avoiding obstacles and
other pedestrians. Blind navigation is fundamentally differ-
ent: they typically prefer retaining canes (Ohn-Bar, Kitani,
and Asakawa 2018), even when assisted by robotic systems.
Canes help detect obstacles and signal others to yield space,
facilitating smoother navigation. Thus, the user-environment
dynamics of blind individuals differ significantly from those
of sighted users.

This insight allows us to simplify the navigation task into
an egocentric path prediction problem, where the system
predicts all possible future user navigation actions—such as
continuing straight, turning left, or turning right. This ab-
straction avoids the uncertainties of precise trajectory pre-
diction and instead focuses on the user’s heading direction
and actions relative to their environment. We adopt a multi-
label classification approach to accommodate multiple pos-
sible navigation directions and enable easy translation of the
model’s outputs to actionable commands for users. While
limited prior work (Wang et al. 2017; Singh, Fatahalian, and
Efros 2016) explored similar ideas, they were restricted to
single-class predictions in constrained environments.

Existing blind navigation models lack the robustness
needed for reliable real-world use, which requires adapt-
ability across diverse scenarios—avoiding collisions in clut-
tered indoor spaces, as well as facilitating outdoor naviga-
tion with goal-based guidance from GPS-enabled apps like
Google Maps. However, instructions from such apps (e.g.,
“Turn left at W. 4th St.” (GoogleMaps 2024)) are often im-
practical for blind users. Consequently, most prior work fo-
cuses on no-goal (Wang, Liu, and Kennedy 2024; Qiu et al.
2022) or fixed-path (Ohn-Bar, Kitani, and Asakawa 2018)
navigation, typically limited to either indoor or outdoor set-
tings. AIGD bridges this gap by enabling both exploratory
and goal-based navigation, allowing users to navigate freely
or follow specific destinations. AIGD is the first system to
handle scenarios across indoor and outdoor environments,
with and without the intent of reaching a final destination,
while also accounting for multiple possible directions in the
absence of a goal.

First-person camera inputs face challenges like jitter, blur,
limited fields of view, and variations in smartphone quality,
camera positioning, and walking speeds. Although the
slower, deliberate movements typical of visually impaired
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users (average walking speed: 0.72 m/s (Liu et al. 2019))
reduce extreme ego-motion effects, these challenges persist.
Furthermore, real-world navigation data exhibits significant
imbalance, with far more straight motions than turning
actions. These observations inform our data collection,
modeling and deployment processes.

Our key contributions include:
1. A robust, lightweight multi-label classification model

addressing turn class imbalance, and effective across sce-
narios with or without destination intent.

2. A methodology for integrating destination and high-
level direction signals into vision-only prediction mod-
els, validated by extensive experiments.

3. An open-source dataset comprising egocentric videos
and associated mobile sensor data collected across di-
verse scenes and participants, facilitating future research.

4. A low-latency smartphone app deploying the model for
real-world navigation assistance.

Related Work
Blind Navigation Assistance Systems: Previous systems
primarily use either wearable devices or robotic helpers.
Wearable systems incorporate body-mounted sensors (Abidi
et al. 2024) (e.g., on feet, knees, or waist) and rely on stan-
dalone devices, like laptops in backpacks (Lee and Medioni
2016), smartphones (Sato et al. 2017; Pawar et al. 2022)
or tablets (Li et al. 2019) for computations. For instance,
Lee and Medioni (2016) developed a head-mounted RGB-
D camera system for ego-motion estimation and obstacle-
aware path planning, providing tactile feedback through a
haptic vest. Wang et al. (2017) introduced a wearable struc-
tured light camera-based system providing feedback via vi-
brations and Braille.

Robotic helpers, such as smart canes (Hesch and Roume-
liotis 2010; Gupta et al. 2015; Yang, Gao, and Choi 2024)
or suitcase-mounted devices (Manglik et al. 2019), act as
robotic guide dogs. For instance, Wachaja et al. (2015) pro-
posed a robotic walker with laser rangefinders and servo
motors for egomotion estimation and obstacle detection,
while ISANA (Li et al. 2019) integrates an RGB-D camera
with a Google Tango tablet providing multimodal feedback
through speech, audio, and haptics.
Egocentric Navigation: Egocentric navigation comprises
trajectory forecasting, which predicts future 2D/3D posi-
tions, and path prediction, which identifies discrete di-
rectional actions (e.g., left, right, forward), with related
research extending into goal-based navigation. Trajectory
forecasting, while extensively studied for vehicles, has seen
limited attention for human navigation. Yagi et al. (2018)
proposed a convolution-deconvolution network using pedes-
trian poses and ego-motion, while others have used GRU-
CNN (Styles, Sanchez, and Guha 2020) and LSTM encoder-
decoder models (Qiu et al. 2021) to predict human trajec-
tories in indoor environments. More recent methods lever-
age multimodal transformers (Qiu et al. 2022) and diffusion
models (Wang, Liu, and Kennedy 2024) to incorporate scene
semantics and past trajectories for future prediction.

Egocentric path prediction methods include Lee and
Medioni (2014), which generates 3D occupancy maps and
utilizes D*-Lite planning for four directional cues (straight,
left, right, stop); Singh, Fatahalian, and Efros (2016), which
uses a fine-tuned CNN to predict discrete motion classes
from single camera images; and Ohn-Bar, Kitani, and
Asakawa (2018), which developed a dynamic path planning
policy personalized to user reaction times, providing local-
ized guidance based on global pre-planned layouts.

Most goal-based navigation research focuses on robotics
(Sánchez-Ibáñez, Pérez-del Pulgar, and Garcı́a-Cerezo
2021) and autonomous vehicles (Aradi 2022), relying on dy-
namic path planning and reinforcement learning. However,
these approaches are unsuitable for modeling human behav-
ior, particularly for blind users due to unique social and re-
action constraints.

To the best of our knowledge, AIGD is the first system to
generalize navigation for blind users across diverse scenar-
ios. Our approach is motivated by the unique requirements
of this use-case, allowing us to scope the problem to a lim-
ited set of instruction classes while incorporating goal-based
navigation and directional uncertainty, without relying on
complex dynamic planning or reinforcement learning. This
ensures a practical and user-centric solution.

Method
System Overview
Our system features a smartphone app running a lightweight,
real-time model on-device, using video input from the
device’s camera, and optionally GPS and Google Maps
data for destination-based navigation. Sensor data (e.g., ac-
celerometer, gyrometer) is used only during data collec-
tion for prediction label generation, not for model inference
in the deployed user app. Navigation predictions are post-
processed into audio instructions for the user.

Problem Definition
We model this task as a multi-label classification problem,
where, for each frame sampled from the smartphone cam-
era stream, the system predicts the user’s heading direction
one second into the future. Specifically, based on the cur-
rent scene and, optionally, past frames, the model outputs
classification scores for three possible directions (FRONT,
LEFT, RIGHT) the user could take in the next second. The
one-second future horizon is informed by studies on walking
speeds (Liu et al. 2019) and average reaction times (Bhirud
and Chandan 2017) specific to our blind user base.

Multiple turn labels are generated only in scenarios with-
out destination intent, typically at intersections or when
pathways diverge. In such cases, the model must predict all
possible directions one second before the turn begins. Dur-
ing the turn, it must predict the active turn direction (LEFT-
/RIGHT), and finally transition to predicting FRONT, with
high confidence, as the turn concludes. Fig. 1 illustrates this
with frames sampled at 1 FPS. For free-space navigation
without obstacles, our labeling scheme conditions the model
to output only the FRONT direction.
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Figure 1: Labeling Scheme for frames sampled at 1 FPS.
Red blocks denote other walkable directions at intersection.

Dataset
At the time of our study, existing egocentric walking datasets
lacked the diversity of scenarios and the sensor or GPS data
needed for our use case. Besides, most were confined to spe-
cific environments (e.g., labs, offices), and relied on special-
ized cameras or hardware.

To better reflect the real-world conditions of our app’s us-
age, we collected a custom dataset using smartphone cam-
eras, aiming to capture the walking speeds and styles of vi-
sually impaired individuals. To constrain the study, we used
iPhone 13 with the AIGD data collection app installed. Eight
participants, primarily graduate students and tech interns,
collected data in semi-crowded spaces with stationary obsta-
cles and people. To simulate social navigation interactions
similar to those experienced by our target users, participants
wore black glasses and carried the smartphone on a lanyard
near their chest, walking slowly and cautiously. This setup
also captured variations in first-person camera movements,
camera positionings, and fields of view.

Data was collected for diverse indoor and outdoor scenes
across Pittsburgh, Seattle, and the Bay Area, as described
in Tab. 1, focusing on everyday venues outside users’ homes
or offices. Indoor environments included well-lit spaces with
numerous aisles, such as grocery stores, to increase the fre-
quency of left and right turns. Since there is no destination
for these, participants were instructed to turn at every avail-
able opportunity. Outdoor data was collected in parks with
winding pathways and city streets during daytime. All walk-
ing paths were unscripted and unplanned, with each video
capturing a single scene and lasting 2 to 10 minutes.

In total, the dataset includes 57 hours of walking data at 30
fps comprising videos from smartphone cameras and sensor
data (accelerometer, gyrometer, magnetometer, pedometer)
captured at 0.1-second intervals. For outdoor scenes, GPS
locations and directional data from the Google Maps API
were also logged.

Video frames were down-sampled to 2 fps, and con-
verted to 128×128 gray-scale. Sensor data underwent de-
noising, reference transformations, and windowing to gener-
ate ground truth labels, which were then timestamp-aligned
with the video frames. GPS and high-level destination di-
rections were aligned with these records, where available.
Each data example consists of a frame, its label, the preced-
ing 5 seconds (10 frames) as context, and associated GPS
and direction features for all frames. Past context frames
help inform future predictions by implicitly capturing the
user’s walking speed and reaction time. The dataset consists

Scene Data Split

Indoor

Library 1 Train
32 hours; CMU Hall Train
220k Library 2 Validation
examples Grocery Store Test

Outdoor

Pittsburgh Street 1 Train
25 hours; Park (70% videos) Train
172k Pittsburgh Street 2 Validation
examples Seattle Street 1 Test

Park (30% videos) Test

Table 1: Data Splits

of 392,580 examples, split 60:20:20 for training, validation,
and testing, ensuring no scene overlap across splits, as sum-
marized in Table 1.

We open-source† a subset of the collected egocentric
videos and associated mobile sensor data, where release con-
sent has been obtained from relevant authorities, ensuring
compliance with ethical and privacy regulations.

Ground Truth Labels Labels for each sampled frame
were derived from sensor data. Various methods, in-
cluding accelerometer, compass, GPS, and optical flow-
based approaches were evaluated for turn label calcula-
tion. Among these, the compass-based method consistently
yielded the most accurate results, particularly at slower
walking speeds, proving less noisy than accelerometers and
more precise than GPS for heading estimation. Details of
these approaches, evaluations and parameter tuning, follow
(Markevych et al. 2021). Below is a brief overview.

For each data point, the turning angle is computed by
comparing the agent’s facing direction over a 0.5-second in-
terval. Angles above 5◦ indicate a RIGHT turn, below −5◦

a LEFT turn, and within ±5◦ represent FRONT movement.
The 5◦ threshold, an adjustable hyperparameter, controls
sensitivity to minor orientation changes.

For indoor scenarios without destination intent, auto-
calculated turn labels were manually re-labeled to ensure all
possible turn directions at intersections were captured. Mul-
tiple labels were assigned to the initial 2 seconds of each
turn.

Models
This section outlines the models used to validate our pro-
posed problem formulation and intent integration method-
ology. For no-destination (no-intent) navigation, we im-
plement multi-label classification models, including simple
baselines such as CNN and ConvLSTM, commonly em-
ployed in prior work (Styles, Sanchez, and Guha 2020; Qiu
et al. 2021; Singh, Fatahalian, and Efros 2016). We then
extend these no-intent models by incorporating destination
intent features and GPS signals to enable goal-conditioned
predictions.

CNN: Following Singh, Fatahalian, and Efros (2016), we
finetuned a ResNet34 model with a linear classification head

†Online open-sourced dataset: http://bit.ly/41h7jJn
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to encode individual frames. This baseline model only con-
siders per-frame information, disregarding the temporal con-
text provided by preceding frames.

ConvLSTM: The ConvLSTM (SHI et al. 2015) architec-
ture, described in Fig. 2a, designed for spatiotemporal pre-
diction, serves as our temporal baseline to leverage the vi-
sual information in the preceding context frames. However,
it is computationally intensive and susceptible to overfitting,
particularly with limited fine-tuning data.

PredRNN: PredRNN (Wang et al. 2023) utilizes spa-
tiotemporal LSTM units to model sequential dependencies
in video data, and is widely used for future frame prediction
tasks (Jadhav 2020; Ma, Zhang, and Liu 2022). We explore
PredRNN’s ability to model complex short-term dynamics
for our future direction prediction use-case. However, like
ConvLSTM, PredRNN is computationally demanding for
both training and inference, with even higher latency due
to its increased architectural complexity.

Intent-based Navigation
For outdoor navigation, directions from Google Maps pro-
vide high-level guidance by localizing the user via GPS.
However, GPS accuracy (∼ 4.9 meters (GPS.gov 2024)) is
insufficient for precise local navigation. To address this, the
model must predict local directions, and the corresponding
actions to take in the next second, that are aligned with the
high-level Maps directions and the user’s GPS history.

In this work, we use the Google Maps Directions API
(GoogleMaps 2024), which provides step-by-step walking
instructions for specified start and destination addresses.
For the “walking” mode, the API returns an array of steps,
each containing a start location (latitude-longitude),
end location, and a maneuver or action to take at
the end location. Each step corresponds to a travel
segment. At each timestep, we pick the appropriate seg-
ment to retrieve the maneuver from based on the user’s
GPS position and the segment’s start location and
end location. Relevant maneuvers for walking in-
clude turn-slight-left, turn-sharp-left,
turn-left, turn-slight-right,
turn-sharp-right, turn-right, and straight.
We one-hot-encode the maneuver values and append them
with the latitude and longitude from the start location
and end location fields to create an Intent Feature for
each step. The Intent Feature is then combined with the
user’s current GPS coordinates and passed through a linear
embedding layer to generate the Intent Embedding vector,
which serves as a high-level intent conditioning input for
the model.

The following sections detail the modifications made to
the baseline CNN and ConvLSTM architectures to incor-
porate Intent Embeddings. As discussed in the results sec-
tion , the performance gains offered by PredRNN are out-
weighed by its high computational requirements and la-
tency, which are critical factors for smartphone deployment.
Hence, it is excluded from the intent-based experiments. In-
stead, we implement a more efficient, hybrid CNN+LSTM
architecture to capture both temporal and intent signals.
CNN with Intent: Intent embeddings are concatenated with

Figure 2: Model Architectures.

CNN-extracted frame embeddings, which are then passed
through a 2-layer MLP for prediction.

ConvLSTM with Intent (Fig. 2b): Intent embeddings are
projected down to two C-dimensional vectors, where C=3
corresponds to the number of video frame channels. These
vectors are added as shift and scale factors to the frame in-
put channels before passing through the ConvLSTM layers.
While we explored other early fusion strategies, this method
demonstrated the best performance vs complexity tradeoff.

CNN + LSTM with Intent (Fig. 2c): This architecture
enhances the CNN+Intent model by replacing the MLP in
the final classifier with a 2-layer LSTM. It combines past
frame embeddings, extracted via the powerful ResNet fea-
ture extractor, with the corresponding timestep’s intent em-
beddings, and uses LSTMs to model past context tempo-
ral relationships. Compared to ConvLSTM, CNN+LSTM
is more computationally efficient as the LSTM processes
lower-dimensional embeddings instead of full image data.
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Figure 3: Distribution of class labels in the dataset.

Augmentation Specs Purpose

Translation 5–25 pixels vertical
and horizontal

Varying camera
heights

Color Jitter 0-20% HSV Varying lighting
Random Crop 5-20 pixel squares Occlusions
Rotation -20 to +20 degrees Camera rotations dur-

ing walking
Noise Gaussian or salt-

pepper
Differing camera
qualities

Table 2: Augmentations Settings

Experiments
Label Imbalance
Despite efforts to collect more turn-based data, the dataset
remains significantly skewed toward the FRONT label,
as seen in Fig. 3. However, predicting turns (LEFT and
RIGHT) is more critical for navigation. To address this im-
balance and improve turn prediction, we implemented the
following during training:
1. Minority Oversampling: Doubled LEFT/RIGHT class

examples.
2. Data Augmentation: Applied transforms described in

Tab. 2 with a 20% probability.
3. Loss Function: Oversampling reduces class imbalance

but does not fully address the more challenging, yet rarer,
turn prediction cases near the start and end of a turn.
To mitigate this, we employed Focal Loss (Lin et al.
2020), which emphasizes harder-to-classify samples by
dynamically scaling their loss contribution. We also ex-
perimented with Weighted BCE Loss using class weights
of 2:2:1 (LEFT:RIGHT:FRONT), which provided minor
performance gains. These weights were integrated into
our focal loss formulation.

Sampling, augmentation, and loss settings were deter-
mined through experiments on CNN/ConvLSTM baselines.

Experimental Setup
All models were fine-tuned using the label balancing set-
tings described above. Best available public checkpoints
were used to initialize the CNN and ConvLSTM compo-
nents for both no-intent and intent-based models, as well as
PredRNN. The final MLP in the CNN-based models, LSTM
in the CNN+LSTM+Intent model and the Intent Embedding

layers were trained from scratch. Training was conducted
for 30 epochs with a batch size of 64, using the Adam opti-
mizer with a weight decay of 1e-3. The CosineAnnealingLR
scheduler was used, with learning rates of 1e-4 for layers
trained from scratch and 1e-5 for fine-tuned layers.

We conducted ablation studies to assess the impact of
different training data configurations. No-intent models are
well-suited for indoor scenarios, where GPS and high-level
directions are unavailable, but multi-label supervision is pro-
vided. In contrast, intent-based models effectively leverage
GPS and directional features in outdoor datasets. Hence,
we trained the no-intent models exclusively on the indoor
dataset and the intent-based models on the outdoor dataset.
Performance was evaluated on corresponding test sets and
benchmarked against our generalized intent models trained
on combined indoor and outdoor datasets.
Evaluation Metrics: We evaluate the models using accu-
racy, AUC, Precision, Recall, and F1 score.

Results
Tab. 3 details the performance of models trained on com-
bined indoor and outdoor datasets, evaluated on a test set
containing both indoor and outdoor video segments. Tab. 4
breaks down the AUC evaluations of these models for in-
door and outdoor test videos separately. Tab. 5 summarizes
the results of the training dataset ablations.

For all experiments, the performance of the FRONT label
remains largely unchanged by the modifications. Since our
use case emphasizes turn (LEFT/RIGHT) classes, the fol-
lowing sections focus only on their performance.

Performance of No-Intent Models
Without intent features, ConvLSTM and PredRNN outper-
form CNN by leveraging temporal context, which is partic-
ularly beneficial for path disambiguation in the absence of
high-level intent cues. Temporal modeling enhances scene
understanding, especially during turns, where past frames
provide context about the ongoing action (e.g., turning), and
the current frame helps decide whether to continue or con-
clude the turn.

Among no-intent models, PredRNN achieves the best per-
formance on the benchmark test dataset, surpassing Con-
vLSTM due to its advanced future frame prediction archi-
tecture. Despite its complexity, PredRNN generalizes bet-
ter than ConvLSTM, exhibiting less overfitting. However,
its computational demands outweigh its performance gains,
making it an unsuitable candidate for on-device deployment.

No-intent models perform better on indoor video seg-
ments than outdoor scenes. This is expected, as indoor
datasets provide multi-label supervision for ambiguous sce-
narios like intersections, while outdoor datasets use single-
label annotations for each turn. Consequently, we observe
many false positives at outdoor intersections, because the
no-intent models cannot leverage the disambiguation pro-
vided by the Intent Features.

Effects of Adding Intent Features
Incorporating intent features and GPS signals enhances the
performance of CNN and ConvLSTM models over their no-



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Model LEFT RIGHT FRONT

AUC Prec. Rec. F1 AUC Prec. Rec. F1 AUC Prec. Rec. F1

CNN 0.571 0.610 0.543 0.5746 0.608 0.702 0.567 0.6273 0.900 0.903 0.803 0.8501
ConvLSTM 0.622 0.689 0.544 0.608 0.645 0.725 0.572 0.6395 0.908 0.900 0.810 0.8526
PredRNN 0.636 0.708 0.549 0.6184 0.657 0.752 0.570 0.6485 0.912 0.910 0.840 0.8736

CNN + Intent 0.588 0.619 0.548 0.5813 0.622 0.711 0.571 0.6334 0.911 0.910 0.833 0.8698
ConvLSTM + Intent 0.638 0.706 0.556 0.6221 0.659 0.742 0.571 0.6454 0.912 0.918 0.830 0.8718
CNN + LSTM + Intent 0.664 0.728 0.559 0.6324 0.700 0.766 0.583 0.6621 0.920 0.920 0.846 0.8814

Table 3: Performance for models trained on combined Indoor + Outdoor training datasets. AUC PR, Precision, Recall and F1
scores are reported on entire the test set (Indoor + Outdoor).

Model Indoor Outdoor

LEFT RIGHT FRONT LEFT RIGHT FRONT

CNN 0.579 0.614 0.905 0.550 0.592 0.900
ConvLSTM 0.628 0.649 0.909 0.609 0.634 0.905
PredRNN 0.641 0.662 0.918 0.621 0.645 0.910

CNN with Intent 0.577 0.613 0.900 0.607 0.638 0.914
ConvLSTM with Intent 0.632 0.649 0.911 0.651 0.672 0.914
CNN + LSTM with Intent 0.660 0.695 0.917 0.671 0.707 0.920

Table 4: Performance of models trained on combined Indoor + Outdoor training datasets, with AUCs reported separately for
Indoor and Outdoor test data.

Model Train
/ Test

LEFT RIGHT FRONT

CNN Indoor 0.590 0.626 0.913
ConvLSTM Indoor 0.643 0.655 0.918
PredRNN Indoor 0.667 0.687 0.925

CNN + Intent Outdoor 0.600 0.629 0.906
ConvLSTM
+ Intent

Outdoor 0.640 0.659 0.908

CNN + LSTM
+ Intent

Outdoor 0.66 0.682 0.912

Table 5: Ablations with different train and test data mixes.

intent counterparts, as shown in Tab. 3. The gains are par-
ticularly significant for outdoor test videos (Tab. 4), where
intent and GPS signals provide explicit directional cues and
help disambiguate turns.

For the indoor test set, the performance difference be-
tween no-intent and intent models is negligible. Given the
substantial gains observed for outdoor scenarios, the intent
models depict a net positive improvement while supporting
both scenarios.

Finally, the CNN+LSTM+Intent model outperforms Con-
vLSTM+Intent in both evaluation metrics and computa-
tional efficiency. This mid-fusion approach surpasses the
early fusion strategy in ConvLSTM+Intent by independently
extracting frame features while jointly modeling temporal
information from frame and intent embeddings. Notably,
CNN+LSTM+Intent achieves greater gains on indoor videos
compared to CNN+Intent and ConvLSTM+Intent models,

reducing the performance gap between indoor and outdoor
datasets. This is likely due to the later fusion of modalities
in the classification head, which better isolates the contribu-
tions of video, and Intent/GPS features.

Training Data Ablations
In tab. 5, the no-intent models trained exclusively on indoor
data outperform those trained on a mix of indoor and out-
door data when evaluated on the indoor test videos. In the
absence of ambiguous turn supervision in the outdoor train-
ing set, these models learn from the much cleaner indoor
training set, effectively capturing the aisle and turn patterns.

In contrast, intent models trained solely on outdoor data
perform worse than those trained on a mix of indoor and
outdoor datasets, overfitting the smaller outdoor training set.
While indoor test metrics are not significantly enhanced by
the intent modifications, including indoor videos in the train-
ing data benefits the overall performance of intent models.

Qualitative Analysis
Fig. 4 presents GradCAM (Selvaraju et al. 2017) visualiza-
tions from the CNN model. Even the simple CNN baseline
effectively learns path features and curves, enabling it to de-
tect turns in the near future.

Deployment
We deployed our best generalized model,
CNN+LSTM+Intent, to an iPhone 13 using CoreML
(Apple 2024), as shown in Fig. 5, optimizing for minimal
inference latency and on-device resource usage, including
memory, GPU, and battery. We tuned the video frame
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Figure 4: Grad-CAM heatmaps for indoor/outdoor scenes.

Figure 5: AIGD Deployment Architecture

rate and conducted quantization experiments, monitoring
resource consumption metrics. Fig. 6 summarizes the
results. The final setup used 16-bit model quantization and 2
FPS videos, balancing performance and resource efficiency.

Inference frequency is 2Hz, allowing the system to as-
sess the state of the environment approximately every 0.5
seconds. Given our users’ typical walking speeds and envi-
ronments, this is sufficient for reliable real-time navigation
while maintaining accuracy, adaptability and efficiency.
User Privacy: All processing occurs locally on the de-
vice, with only anonymized performance metrics sent to the
server. No raw camera or sensor data is stored or shared.

Discussion
To ensure reliable and robust navigation, we assessed the
model across varied settings. It demonstrates strong gener-
alization from training environments (e.g., libraries, univer-
sity halls) to unseen test locations like grocery stores. Future
work will expand the dataset to further test performance in
more unfamiliar environments. Addressing this is critical for
user safety, especially in ambiguous situations.

Our novel intent-conditioning technique to extend ego-
path prediction models utilizes simple architectures, com-
monly used in literature, due to latency constraints. Future
research could explore the potential of this technique with
advanced architectures and improved latency optimization.

The exploration of larger, more complex models could
also be facilitated by expanding the dataset to include ad-
ditional scenarios. Incorporating videos from diverse smart-
phone cameras would also improve the model’s invariance
and generalization across different hardware configurations.

Error Analysis and Future Improvements: An analysis
of the most common error patterns in the model’s predic-

Figure 6: GPU utilization across quantization levels at vary-
ing frame rates.

tions revealed challenges in: 1) Dynamic environments, such
as mis-predictions around moving objects (e.g., pedestrians)
or stopping for obstacles and traffic lights, and 2) Ambigu-
ous path structures, including blocked or forked paths and
nuanced turns that are not strictly LEFT or RIGHT.

Currently, our model supports three directional classes,
but future work could easily introduce more granular
classes, like finer-grained turning angles and start/stop walk-
ing commands, by collecting and labeling more data.

Our research into cane-walking patterns and social
dynamics of blind navigation guided our approach based on
the limited scene information from a smartphone camera,
relying on the assumption that canes help detect obstacles
and navigate blocked paths. However, explicitly modeling
the behavior of pedestrians, vehicles, and other environmen-
tal entities could enable more nuanced navigation paths.

Implications of the Egocentric Dataset: Our released
indoor and outdoor egocentric video dataset not only
advances research in first-person view analysis, ego-motion
estimation and forecasting but also has broader applications
in mobility patterns, pedestrian behavior, and accessibility
design. The dataset provides valuable insights into how
visually impaired individuals navigate urban spaces, poten-
tially aiding urban planning and infrastructure development
by: 1) Identifying challenging navigation areas that need
infrastructure improvements, 2) Optimizing pedestrian
pathways for better accessibility, 3) Enhancing public
transit by providing real-time accessibility information.

Conclusion
This paper presents AI Guide Dog (AIGD), an egocentric
navigation system for visually impaired users. We introduce
a novel intent-conditioning technique and multi-label classi-
fication framework to tackle goal-based navigation and di-
rectional uncertainty in no-destination scenarios. Our sim-
ple smartphone-based deployment lowers financial and tech-
nical barriers to adoption, without compromising perfor-
mance. Additionally, our released egocentric dataset pro-
vides valuable insights to help further research in assis-
tive technologies and accessibility-focused urban planning.
Given the limited work in this domain, we hope to inspire
future advancements in assistive navigation technologies.
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