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Abstract

While modern computer vision systems have notched tremen-
dous successes there are still obstacles to deploying such sys-
tems in real-world scenarios. Two salient obstacles are the
lack of flexibility that comes with systems trained on fixed
categories of data and a lack of stability. Indeed, it is not un-
common when using a pre-trained classifier on a video stream
to find it will correctly identify an object as a tree (for exam-
ple) in one frame only to fail to identify the same object as
a tree in the next. In this paper we propose a system that can
ameliorate both of these issues by introducing reason into the
process of object detection. In particular, we will introduce
a hybrid computer-vision / logical reasoning system that ob-
serves the world, reasons about what it sees, and can change
its judgement as a result of that reasoning.
We test our system by addressing the challenging problem
of distinguishing between real and artificial objects in two
datasets, showing improved performance over our base com-
puter vision model in both cases.

1 Introduction
Our goal in this paper is to develop a hybrid perceptual/rea-
soning system which can reason about and resolve ambigu-
ities in perception. This has the potential to ultimately im-
prove the stability of computer vision algorithms which are
deployed in the wild. While computer vision has matured
tremendously in the past decade (e.g. (Bochkovskiy, Wang,
and Liao 2020), (Wang, Bochkovskiy, and Liao 2022),
(Dosovitskiy et al. 2020)), even the basic problem of gen-
eral image classification is not fully solved. Indeed, it is not
uncommon when using a pre-trained classifier on a video
stream to find it will correctly identify an object as a tree
(for example) in one frame only to fail to identify the same
object as a tree in the next. In this paper we propose a system
that can ameliorate this issue by “closing the loop” between
vision and reason. In particular, we will introduce a hybrid
computer-vision / logical reasoning agent that observes the
world, reasons about what it sees, and can change its judge-
ment as a result of that reasoning.

Our approach to ambiguity resolution relies on a two-part
architecture as detailed in 3. The vision system, based on

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

OpenAI’s CLIP, produces estimates that each of a set of la-
bels applies to a given image. If the top two estimates are
sufficiently close, reasoning engines are instantiated. The
first reasons about what properties should be present in the
image if the top category is correct, while the second en-
gine performs similar reasoning under the assumption that
the second category is correct. Taken together, these two en-
gines thus give a measure of relative consistency for each
category; these scores are then combined to adjust the con-
fidences for the top categories, as detailed in Section 3. In
Section 4 we describe a feature selection algorithm which
measures the performance of features described in a given
knowledge base an greedily selects a performant subset of
those features.

As a system for ambiguity resolution, the system of-
fers some unique features. As discussed in Section 2, sev-
eral contemporary systems combine the capacities of deep
vision-language models with some kind of reasoning. To
our knowledge, ours is the only system that uses reasoning
specifically in combination with additional queries of the un-
derlying vision model specifically to resolve ambiguities (as
opposed, for example, to engaging in question answering).

One of the great advantages of our system is that is allows
for a CLIP-based reasoner to be deployed in a wide range of
environments with improved performance that does not rely
on fine-tuning the underlying model. The reasoning of the
symbolic system is also transparent and thus explainable. In
situations where an in-distribution dataset is available, our
fine-tuning mechanism allows for greater performance en-
hancement.

Using our system does rely on the manual creation of a
knowledge base, but creating a reasonable set of axioms is
usually fairly straightforward. If in-distribution data is avail-
able, it can be used for feature selection on the knowledge
base.

While our goal with this system is not to provide a gen-
eral purpose commonsense reasoning or visual question an-
swering system, the system as a whole an be used as an
improved-accuracy visual object detector which can ground
such systems in a number of architectures.

We test our system on a dataset which involves distin-
guishing real trains from model trains. We summarize our
primary contributions as follows:

1. We develop a hybrid vision reasoning system that can
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employ reason to correct mistakes in its perception and
demonstrate its effectiveness.

2. We develop a feature selection algorithm to choose a per-
formant subset of a given knowledge base and demon-
strate its effectiveness.

3. We present a new dataset consisting of images of real
trains and model trains, and demonstrate that our model
outperforms basic CLIP in distinguishing the two.

Although our target is object detection, for most of the
datasets we have in mind we cannot compare against stan-
dard object classifiers like ResNet (He et al. 2016) because
the former does not have categories that distinguish between
real and artificial objects. Thus our use of a language-vision
model like CLIP is essential.

We also note that, given a particular knowledge base,
while we do not explicitly measure the individual perfor-
mance of each rule in the knowledge base, this measurement
is done implicitly by the feature selection algorithm when it
is used.

2 Related Work
This work fits broadly into the recent literature on using neu-
rosymbolic methods (Sarker et al. 2021) to apply to the broad
category of research on visual reasoning. As its name indi-
cates, the former refers to a fusion of neural and symoblic
approaches to artificial intelligence, while the latter refers to
the uses of reasoning in visual processing. In recent years,
two primary subtasks of visual reasoning have seen sig-
nificant progress: visual question answering (VQA) (Antol
et al. 2015), (Kafle and Kanan 2017), (Wang et al. 2022),
(Bao et al. 2021), (Zeng et al. 2022) and visual common-
sense reasoning (VCR) (Park et al. 2020), (Zellers et al.
2019). Of particular relevance is (Amizadeh et al. 2020),
which approaches visual question answering neurosymbol-
ically and disentangles visual processing from reasoning in
a way which mirrors our own approach. Their approach dif-
fers, however in some fundamental ways. Their notion of in-
ference is statistical rather than employing classical logical
inference, and their primary concern is in visual question an-
swering. While they develop a mechanism for learning from
context, it is based on updating Bayesian priors rather than
being based on a logical knowledge base. Finally, their goal
is to answer questions accurately in the absence of good per-
ceptual information rather then attempting to rectify percep-
tual errors per se.

Our system introduces a hybrid neurosymbolic reason-
ing framework designed specifically for ambiguity resolu-
tion in computer vision tasks. We build on neurosymbolic
approaches like (Amizadeh et al. 2020), but with a focus on
refining and correcting errors in perceptual understanding
rather than answering visual questions or addressing com-
monsense reasoning. Unlike the purely probabilistic infer-
ence methods employed by previous work, we employ a
paraconsistent logic system for handling contradictory infor-
mation, drawing specifically on active logic’s ability to both
draw inferences and defuse contradictions (Elgot-Drapkin
et al. 1999), (Anderson et al. 2008), (Purang 2001), (Gold-
berg 2022). This provides a novel approach to combining

high-dimensional neural inference with traditional symbolic
reasoning, particularly for tasks that require distinguishing
fine-grained differences (for example, distinguishing real
from artificial objects).

While reasoning and visual models have been integrated
before our contribution is unique in that it uses logical rea-
soning to not only supplement but correct perceptual errors
by issuing queries back to the underlying vision model. This
active feedback loop allows the system to dynamically ad-
just classifications, improving accuracy without needing to
retrain the neural components.

Central to our system is the open vocabulary of CLIP,
which allows for reasoning with arbitrary predicates. This
open vocabulary has been exploited in a number of neu-
rosymbolic system; one prominent example is Concept-
Graphs (Gu et al. 2024) which use vision language models
to dynamically build a scene-graph of an unknown environ-
ment, thereby grounding symbolic reasoning in neural pat-
tern recognition.

3 Architecture
Overall Architecture
Our overall architecture is summarized in Figure 2. It con-
sists primarily of a perceptual component and a reason-
ing component. The perceptual system (based on OpenAI’s
CLIP) takes a set of images and a set of potential labels as
input and outputs a score for the likelihood that a given im-
age corresponds to each of the given labels.

Specifically, given a set of categories C =
[C1 . . . Cn] and an image I , the perceptual system
will produce a distribution P = [p1 . . . pn] where pi is
the estimated confidence that I is an instance of category
Ci. If the distribution P exhibits sufficient ambiguity about
the results ( defined as the difference between the top two
scores being less than some ambiguity threshold θ), then the
reasoning system is deployed. This systems instantiates two
logical reasoning engines, e1 and e2 as follows. A common
knowledge base K is used which describes general features
of the categories under consideration. If the top-scoring
feature is Ct, then the engine e1 is run with its initial
knowledge base set to {Ct } ∪ K. Similarly if the second
top-scoring feature is Cs, the engine e2 has its initial
knowledge base set to {Cs } ∪ K (see Figure 2).

As an example, consider an instance of our system that
is trying to distinguish images of real trains from those of
model trains. Suppose that CLIP classifies an image as a
real train with confidence pt = 0.5 and a model train with
confidence ps = 0.4. If the system is using an ambiguity
threshold of θ = 0.25, it will consider this difference small
enough to require further analysis. Thus it instantiates two
different ALMA engines as in Figure 2: one under the as-
sumption that the image is real train and the other under the
assumption that it is a model train.

In the knowledge base shown, the presence of smoke or
plastic are given as indicative of whether the image is of a
train or model train. The system then queries CLIP to de-
termine whether or not these categories are present in the
image, with the result that plastic is detected while smoke is
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not. The system thus derives a contradiction for the hypoth-
esis that it is a train and uses the mechanism described in
Section 3 to recalculate pt and ps.

CLIP
The OpenAI CLIP model (Radford et al. 2021) is a text-
vision model that takes as input an arbitrary set of textual
prompts and a set of images and outputs a contrastive score
which indicates how well each textual prompt matches each
image. Because it can work with arbitrary text prompts, it
gives a way of performing image classification on arbitrary
categories. To our knowledge, this was not previously possi-
ble in computer vision where systems worked on a fixed set
of categories. This capacity is essential for the system we
propose, since it is designed to work with arbitrary knowl-
edge bases. It is especially helpful for the task we focus on
(distinguishing model trains from real trains) since the cate-
gories are sufficiently similar that an off-the-shelf computer
vision algorithm is unlikely to have both among its fixed cat-
egories.

We also note that previous work has indicated that tex-
tual transformers often perform poorly on basic reasoning
tasks (Helwe, Clavel, and Suchanek 2021). We found that
CLIP was a reasonable, if highly imperfect, basis for simple
reasoning and conjecture that the grounding of language in
vision inherent in CLIP may improve the reasoning capacity
of the model over pure text transformers.

Active Logic
Our reasoning system is based on the active logic for-
malism developed by Perlis at al , (Elgot-Drapkin et al.
1999), (Purang 2001), (Anderson et al. 2008). In partic-
ular, we use ALMA 2.0, Matthew Goldberg’s implemen-
tation of the formalism as a reasoning engine (Goldberg
2022), (Goldberg 2019). Active logic is designed to be an
internal, time-situated and paraconsistent reasoning system
which is specifically designed for agents which reason in
real-world situations (as opposed to abstract disembodied
agents) (Perlis et al. 2017). For the experiments conducted
in this paper, the ability of the system to detect contradic-
tions without introducing new ones is the essential element.
In particular, active logic gives a way of defining the num-
ber of contradictions that are entailed by a knowledge base.
Crucially, this is very different from classical reasoning – in
traditional first order logic, if a knowledge base K entails
both σ and ¬σ for some sentence σ, then K entails both
σ′ and ¬σ′ for every sentence σ′. Thus in a traditional rea-
soning system the number of contradictions entailed by a
knowledge base is either 0 (if the knowledge base is con-
sistent) or ∞ (otherwise). Active logic avoids this by de-
veloping logical consequences over time, so that as soon as
a contradiction is derived it can be recognized and defused
(along with its sources). In particular, active logic is a step-
logic (Elgot-Drapkin et al. 1999) – it does not assume logical
omniscience but rather proceeds by instantiating all possible
single applications of a deduction rule applied to the current
knowledge base.

Since reasoning in active logic occurs from timestep to
timestep, at any particular timestep t let us denote the con-

tents of the knowledge-base by Kt. Suppose that an initial
knowledge base K0 consists of { p,¬q → ¬p, q → r, r →
¬q }. At any timestep t, Kt is updated to Kt+1 by applying
inference rules to the sentences in Kt. Thus K1 ⊇ { p,¬q →
¬p, q → r, r → ¬q,q,¬q,¬p ∨ ¬r,p→ r }, where the
sentences in boldface have been derived from K1 by ap-
plying forward chaining and resolution inference rules (see
Chapter 9 of (Russell and Norvig 2020) for a discussion of
these inference rules). In the next reasoning step, the active
logic engine will note the presence of both q and ¬q, con-
clude that a contradiction has been derived, and mark the
sentences as distrusted. This prevents any further reasoning
from employing q or ¬q and thus the derivation of arbitrary
contradictions. Thus K2 will replace { q,¬q } with the set
{ distrusted(q), distrusted(¬q), contradiction(q,¬q) }.

Amiguity Resolution
If the perceptual system assigns categories with sufficient
ambiguity, then two instances of ALMA, et and es are in-
stantiated with a common knowledge base. The category
with the highest confidence is also added to et and the cate-
gory with the second highest confidence is added to es. Then
tens step of reasoning are performed in each engine, and the
number of contradictions in etis saved as χt, while the num-
ber of contradictions in es is saved as χs.

If pt and ps are the highest two confidences, we want to
use the contradictions to redistribute the confdience between
the two top categories in a way that preserves the total con-
fidence pt+ps and gradually assigns the confidence of pt to
ps as χt − χs gets larger.

To that end, a reduction factor ρ is computed according to

ρ = [ρ1 ρ2] = 1− softmax(χt, χs)

=
[(

1− exp(χt)
exp(χt)+exp(χs)

) (
1− exp(χs)

exp(χt)+exp(χs)

)]
Thus the reduction factor ρt is a real value in the inter-

val [0, 1] which will be used to compute how much of pt’s
confidence will be given to ps and vice versa: intuitively, if
ρt = 1 then all of pt is given to the second category while if
ρt = 0 then all of ps is given to the top category. The details
of the computation are as follows.

We define τ := (ρt − ρs); thus τ is a scaled difference of
ρs from ρt. We then define S := tanh(τ). We have −1 <
S < 1 and S can be thought of as a bounded measure of the
difference between ρt and ρs.

Finally, we define:

p̂t =

{
pt + Sps if S > 0

pt + Spt otherwise

p̂s = (ps + pt)− p̂t

It is easy to check that:

1. As S → 1, p̂t → pt + ps and p̂s → 0. Thus when the
top category generates significantly fewer contradictions,
it will absorb most of the confidence of ps. Similarly, as
S → −1, p̂t → 0 and p̂s → pt + ps. Thus when the
second category generates significantly fewer contradic-
tions, it will absorb most of the confidence of pt
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(a) Redistribution as a function of S

(b) Redistribution as a function of τ

Figure 1: Redistribution of Probability (pt = 0.5, ps = 0.3)

2. At S = 0, p̂t = pt and p̂s = ps. Thus when the top
category generates the same number of contradictions as
the second category, the confidences are unchanged.

3. p̂t + p̂s = pt + ps. Thus the total confidence shared by
the top two categories is unchanged.

We thus redistribute the total confidence pt+ps according
to a piecewise linear function of S. Graphs are shown in
Figure 1.

In the example in Figure 2, we will have χt = 1, χs = 0
leading to ρ = [0.27 0.73] , τ = −0.23, S = −0.23, p̂t =
0.5 − .23(0.5) = 0.39, p̂s = 0.9 − 0.39 = 0.51. Thus the
reasoning process will adjust the confidences sufficiently to
indicate to the system that the image is of a model train.

4 The Knowledge Base
The additional efficacy of our system relies on having a good
knowledge base that allows the system to reason effectively
in the presence of ambiguity. There are some immediate
challenges that this presents. First, CLIP is not designed to
be logically coherent, so obvious implications that hold in

CLIP
C

I

P=


0.5

0.4
0.1
0.1


pt = 0.5

ps = 0.4

pt − ps < θ

Reasoning

e1 e2

p̂t = 0.39
p̂s = 0.51

train, model train
truck, toy truck
chair

Step ALMA Instance 1 ALMA Instance 2
0: train model train
0: train → not(model train) train → not(model train)
0: model train → not(train) model train → not(train)
0: smoke → train smoke → train
0: plastic → model train plastic → model train

CLIP queried for [ smoke, plastic ]

1: plastic ∧ not(smoke) plastic ∧ not(smoke)
2: model train model train
3: not(train)
4: contra(train, not(train))

Figure 2: Main Architecture.
On being presented with an ambiguous image of a train, the
top two confidences are close enough to warrant ambiguity
resolution. Two logical reasoning engines are instantiated;
Instance 1 operates under the assumption that the image is
of a train while Instance 2 assumes that the image is of a
model train. CLIP is queried for associated features and

Instance 1 derives a contradiction, meaning that the image
seems to be logically inconsistent with being a train. The

ambiguity resolution algorithm then adjusts the confidences
of the respective categories to output p̂t and p̂s.

the real world (if something is a toy train, then it is a toy)
may not be respected by CLIP. Second, the problem of dis-
tinguishing an artifical object from a real one is inherently
asymmetric – while “tells” exist which give away that an
object is artificial, there do not generally exist “anti-tells”
which guarantee that an object is authentic. Finally, CLIP
is not a uniformly accurate classifier, and it’s performance
on classifying different categories can be expected to vary
and produce differing numbers of false positives and false
negatives. Taken together, these considerations mean that it
will not suffice to simply deploy a set of facts about the real-
world differences between trains and model trains; we will
need to calibrate our knowledge base with the perceptual
module and the data we expect.

We note that the active logic engine can support several
inferences processes, including forward chaining and reso-
lution. Of these, resolution is the more general: for example
from p ∧ q → r a forward chaining process will draw no
infereces unless p and q are both established while a resolu-
tion process will note the equivlance of the implication with
¬p∨ ̸= q∨r and conclude that q → r when p is established.
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In general, forward chaining gives for a more controlled and
easily analyzed process, and we will focus on forward chain-
ing based inferences in this paper. An implication p→ q that
is to be used with forward chaining is written in ALMA as
fif(p, conclusion(q)).

We note that given our reliance on forward chaining, we
can expect tells to increase the accuracy scores for model
trains (possibly while decreasing the score for real trains)
and conversely for anti-tells and real trains. This observation
will allow us some intuitive control over the performance of
the algorithm in our knowledge base selection.

For these initial experiments, we chose a fairly simple
knowledge base which consisted entirely of tells and anti-
tells – that is simple object detection conditions which im-
plied either that the image was of a real train or a model
train. In future work we will explore more complicated con-
ditions, where, e.g., the presence of smoke might indicate a
real train if the smoke is black but a model train if the smoke
is light. Future work will also explore the use of temporal
features which span several frames. For example, even with
single frames we found that looking for moving foliage was
an accurate anti-tell, even though no actual movement will
be detectable in the still image. Since CLIP is trained on
still images, more effecitely looking for such features will
involve a certain amount of reasoning across frames.

Our final knowledge base is given in the Supplementary
Materials. We note that most of the tells and anti-tells listed
are ad hoc.

This is mitigated by the quantitative analysis of each fea-
ture that is implicit in the feature selection. Given this, it is
perhaps unsurprising that, as we will see, a large set of ad
hoc features degrades overall performance while a knowl-
edge base calibrated through feature selection improves it.

Each of these logical terms was given an equivalent nat-
ural language term, as listed in the appendix. For example,
the logical literal wall mounted tv would be translated
into the prompt “wall mounted television” which was used
as the input to CLIP.

One of the ways in which the lack of logical coherence in
CLIP manifested was that certain exclusive categories ended
up not being desirable. For example, demanding that a scene
was either indoor or outdoor let to a degradation in perfor-
mance because CLIP would often give low scores to both
indoor and outdoor.

We note that in the reasoning algorithm when CLIP is be-
ing queried for the presence or absence of certain features,
this is done by presenting CLIP with the image along with
two prompts, one for the feature and one for its negation.
For example, in querying for smoke we would present CLIP
with the prompts { smoke, notsmoke }.

Because of the possibility of CLIP making mistakes, each
of the implications in our knowledge will be of varying util-
ity – indeed for each there is some chance of false positives
or false negatives. The situation is somewhat akin to em-
ploying a number of noisy sensors to an object detection
task, and indeed we found that using the entire knowledge
base gives poor results (see Section 6). We therefore employ
a feature selection algorithm to attempt to measure the effi-
cacy of each individual implication and choose an optimal

subset.

Feature Selection
Our feature selection algorithm is roughly modelled on a
number of mutual feature selection algorithms which greed-
ily grow a set of features by locally maximizing mutual in-
formation (see, for example, Joint Mutual Information and
others, as surveyed in (Brown et al. 2012)). Specifically, for
each feature in the knowledge base (e.g. moving foliage) we
measure the number of true positive, true negatives, false
positives and false negatives of that feature (counting a de-
termination that an image is of a model train as a posi-
tive). We then initialize our feature set S to the feature with
the highest estimated F -score. We then recursively grow S,
naively estimating the F score that would be obtained by
adding each individual feature to S and adding the feature
that would increase this measure the most if such a feature
exists.

Recall that our aim to distinguish amongst a set of
fixed categories C = [C1 . . . Cn]. Throughout this
discussion, let KB denote a supporting knowledge base
which indicates that the categories under consideration
are mutually exclusive. For example, when distinguish-
ing trains from model trains we would have KB =
{

fif(train, conclusion(not(model train))),
fif(model train, conclusion(not(train)))

}
Let K denote any consistent knowledge base which con-

tains KB (intuitively K will be the large knowledge base
which we will select from).

The complete set of features F will consist of the pred-
icates which occur as literals in K, with the exceptions of
train and model train.

Definition 1. For any feature f ∈ F and K containing KB ,
we define K(f), the knowledge-base associated with f , as
the minimal subset of K which satisfies:

1. KB ⊆ K(f)
2. K(f) ∪ { f } ⊢

∨
1≤i≤n Ci

Intuitively,K(f) is the smallest subset ofK which allows us
to make a category determination when f is true.

For example,

K(ceiling) = {
fif(ceiling, conclusion(indoor)),

fif(indoor, conclusion(model train))

}

. We will insist that in general K is chosen so that K(f) is
always well-defined and K(f) ∪ { f } is consistent; this is a
fairly modest requirement.

Definition 2. Let S ⊆ F , let i be an image. We will say
that S is estimated as positive or negative on i based on the
following.

• We define the knowledge base associated with S as
K(S) :=

⋃
f∈S K(f).
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• Let χ∗
j (i, S) be the number of contradictions derived

when the reasoning step is performed on image i with
initial knowledge base K(S) ∪ { Cj } for category Cj .
We estimate χ∗

j (i, S) by

χj(i, S) =
∑
f∈S

χ∗
j (i, { f })

. This allows for a naive but inexpensive estimate of
χj(i, S) by using measures of the number of contradic-
tions for each individual feature.

• Let us say that i is estimated positive at S if Cj is the
top category from the base vision system and χj(i, S) is
minimal amongst χk(i, S) for 1 ≤ k ≤ n.

• Similarly we say that i is estimated negative at S if
the visual reasoning system gives the highest confi-
dence to some category besides Cj with χj(i, S) mini-
mal amongst χk(i, S).

Note that the naivete in this estimate comes from two
sources:

1. Assuming that a difference in the number of contradic-
tions will be enough to determine the assigned classifi-
cation without considering the details of the ambiguity
resolution algorithm.

2. Using the naive estimates of χ∗
j .

The intuition is that the minimal χj(i, S) indicates which
category engenders the fewest contradictions; i being esti-
mated positive or negative indicates that the vision model
agrees or disagrees with this indication.

We now define an analogy to the F1-score which forms
the basis of our feature-selection.

Definition 3. Let S ⊆ F and let D be a set of images.
Then ETP(S,D) is the number of images in D which are
estimated positive at S and which are of the ascribed cate-
gory. Similar definitions hold for EFP(S,D), ETN(S,D)
and EFN(S,D) – the number of estimated false positives,
true negatives and false negatives. Then

EF(S,D) :=
2ETP(S,D)

2ETP(S,D) + EFP(S,D) + EFN(S,D)

is the estimated F -score at S.

Our approach in feature selection is to greedily build a
subset S ⊆ F that maximizes the estimated F -score for a
fixed sample of images D. To that end, for any set of re-
maining features R let Ψ(S,R) := argmaxf∈R EF (S ∪
{ f }). Then we recursively define ΦF := Φ′(∅, F ), where
Φ′(S,R) is defined by Algorithm 1.

The final output of the algorithm is then K(S) for the op-
timal subset S = ΦF .

5 Experimental Setup
Our experimental setup will worked with a dataset focused
on distinguishing model trains from real trains. This was cre-
ated from working with four different videos, two of model
trains and two of real trains. The table below gives the names
and access URLs for the videos we used (with permission),

Algorithm 1: Feature Selection Algorithm

function Φ′(S,R)
f ← Ψ(S,R)
if EF(S ∪ { f }) ≤ EF(S) or R = ∅ then

M ← S
else

S′ ← S ∪ { f }
R′ ← R \ { f }
M ← Φ′(S′, R′)

end if
return M

end function

along with a code that will be used to refer to each video in
what follow

To this end, we work with two videos of model trains
(Television 2014), (Television 2022) along with two videos
of real trains (Armstrong 2017), (Armstrong 2019) – these
are referred to in what follows as F1, F2, R1, R2 respec-
tively.

Each video was rendered into a series of still images at
a rate of 60 frames per second1. Before being used, the
datasets were also cleaned so that each image showed ei-
ther a train or model train – in practice this meant remov-
ing parts of the opening and closing credits as well as scene
transitions (the latter tended to use some kind of transforma-
tion from one scene to the next so that the images were not
clearly images from a single scene).

We then ran the images through our system, using the fol-
lowing following parameters:

• The categories passed into clip for each image were:
’train’, ’model train’, ’truck’, ’toy
truck’, ’chair’

• The ambiguity threshold was 0.25; that is an image
would be considered ambiguous and go through the am-
biguity resoltuion process if the difference between the
top two confidences was less than 0.25.

• We used one of several knowledge bases, starting with
that given in Figure 3. The other knowledge bases are
derived from this and described in Section 6

6 Results
Full Knowledge Base for Trains
Taken over all four videos, we processed 180788 images,
of which 40210 were found to be ambiguous. Of the am-
biguous images, 2.7% were properly corrected from the
raw CLIP classification, while 28.5% were improperly cor-
rected, 19% were properly not corrected and 49.7% were
improperly not corrected. By itself, CLIP made the cor-
rect classification for 75.3% of the images while incorporat-
ing the reasoning component brought the accuracy down to
69.5%. We report data for all the train images, all he model
train images, and each individual dataset in Table 1.

1This was accomplished using ffmpeg -i INPUT FILE
-vf fps=60 %04d.jpg
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fif(train, conclusion(not(toy_train))).
fif(model_train, conclusion(not(train))).
fif(train, conclusion(not(plastic))).
fif(train, conclusion(metal)).
fif(train, conclusion(outdoor)).
fif(plastic, conclusion(model_train)).
fif(toy_people, conclusion(model_train)).
fif(indoor, conclusion(model_train)).
fif(toy, conclusion(model_train)).
fif(ceiling_fan, conclusion(ceiling)).
fif(ceiling, conclusion(indoor)).
fif(ceiling_light, conclusion(ceiling)).
fif(wall_mounted_tv, conclusion(indoor)).
fif(exit_sign, conclusion(indoor)).
fif(painted_sky, conclusion(indoor)).
fif(desk, conclusion(indoor)).
fif(telephone, conclusion(indoor)).
fif(fake_foliage,

conclusion(model_train)).
fif(giant_phone,

conclusion(model_train)).
fif(small_scale,

conclusion(model_train)).
fif(miniature, conclusion(model_train)).
fif(detailed, conclusion(model_train)).
fif(intricate, conclusion(model_train)).
fif(plastic, conclusion(model_train)).
fif(indoor_lighting,

conclusion(model_train)).
fif(led_lights,

conclusion(model_train)).
fif(small_lights,

conclusion(model_train)).
fif(bright_lights,

conclusion(model_train)).
fif(not(toy), conclusion(train)).
fif(outdoor, conclusion(train)).
fif(outdoor_lighting,

conclusion(train)).
fif(sunset_lighting, conclusion(train)).
fif(real_person, conclusion(train)).
fif(real_smoke, conclusion(train)).
fif(moving_trees, conclusion(train)).
fif(clouds, conclusion(train)).
fif(moving_water, conclusion(train)).
fif(moving_foliage, conclusion(train)).
fif(moving_plants, conclusion(train)).
fif(black_smoke, conclusion(train)).
fif(side_steam, conclusion(train)).
fif(large_scale, conclusion(train)).

Figure 3: Trains Knowledge Base.

Dataset
Number

of Images
Raw

Acc (%)
Reasoned
Acc (%)

Overall 180788 75.2 69.5
Model Trains 85565 97.3 98.5
Real Trains 95223 55.5 43.6
F1 7375 90.2 91.7
F2 78190 98.0 99.1
R1 51861 59.5 47.2
R2 43362 50.7 39.2

Dataset
Num
Amb

Good
Corr

Bad
Corr

Good
Non-
Corr

Bad
Non-
Corr

Overall 40210 1098 11443 7671 19998
Model 3220 1019 4 1784 413
Real 36990 79 11439 5887 19585
F1 948 117 0 618 213
F2 2272 902 4 1166 200
R1 20212 36 6398 2454 11324
R2 16778 43 5041 3433 8261

Table 1: Accuracy of Corrections Using Full Knowledge
Base. Here “Num Amb” refers to the number of ambigu-
ous images, “Good Corr” refers to the number of those im-
ages that were corrected to align with the ground truth, “Bad
Corr” refers to the number that were corrected in a way that
contradicted the ground truth, and similarly the “Non-Corr”
columns refer to the ambiguous images which were not cor-
rected

Analyzing these results with the full knowledge base we
note first that by itself, CLIP is able to correctly identify
75.2 % of the images. Its strengths are asymmetric though
– while it correctly identified 97.3% of model trains it was
only correct 55.5% of the time on real trains. Thus CLIP
has an apparent (surprising) bias toward classifying trains as
model trains.

Reasoning seemed to exacerbate this asymmetry – using
the full knowledge base the accuracy for model trains went
up while the accuracy for real trains went down. Overall ac-
curacy went down to 69.5%. Thus we say that the tells in the
knowledge base were on the whole more efficacious than the
anti-tells. It is worth noting that in the original knowledge
base the number of tells greatly outnumbers the number of
anti-tells.

The more detailed data reveals that on the datasets with
real trains, the reasoning made many bad corrections but also
made more non-corrections – that is failed to make correc-
tions in cases where a correction was the right thing to do.

Feature Selection for Trains
After running the feature selection algorithm described
above (using 80% of each dataset), we obtained the follow-
ing reduced knowledge base:

fif(train, conclusion(not(toy_train))).
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Dataset
Number

of Images
Raw

Acc (%)
Reasoned
Acc (%)

Overall 180788 75.2 82.8
Model Trains 85565 97.3 96.6
Real Trains 95223 55.5 70.4
F1 7375 90.2 85.1
F2 78190 98.0 97.7
R1 51861 58.9 75.5
R2 43362 50.0 64.4

Dataset
Num
Amb

Good
Corr

Bad
Corr

Good
Non-
Corr

Bad
Non-
Corr

Overall 40210 15350 627 17417 6816
Model 3220 32 625 1166 1397
Real 36990 15318 2 16251 5419
F1 948 0 375 247 326
F2 2272 32 250 919 1071
R1 20212 8626 1 8547 3038
R2 16778 6692 1 7704 2381

Table 2: Accuracy of Corrections Using Feature-Selection
Based Knowledge Base

fif(toy_train, conclusion(not(train))).
fif(moving_foliage, conclusion(train)).
fif(side_steam, conclusion(train)).
fif(train, conclusion(not(plastic))).
fif(plastic, conclusion(toy_train)).
fif(desk, conclusion(indoor)).
fif(indoor, conclusion(toy_train)).
fif(real_smoke, conclusion(train)).
fif(small_lights, conclusion(toy_train)).
fif(indoor_lighting, conclusion(toy_train)).
fif(real_person, conclusion(train)).
fif(large_scale, conclusion(train)).
fif(sunset_lighting, conclusion(train)).
fif(ceiling, conclusion(indoor)).

We note that 6 features are tells (plastic, desk,
indoor, small lights, indoor lighting,
ceiling) and 6 are anti-tells (moving foliage,
side steam, real smoke, real person,
large scale, sunset lighting) so we have a
much more balanced set in terms of what is being looked at.

The results are presented in Table 2. We note that com-
pared to using the full knowledge base, overall accuracy and
the accuracy on the real trains are significantly improved, al-
though this comes at the cost of a slight decrease in perfor-
mance on the model trains. At some level this is not too sur-
prising, since the feature selection algorithm was designed
to improve the F -score of the overall dataset, and the eas-
iest path to that was by improving the performance on real
trains.

Additional Feature Selection for Trains
Finally, we tried removing some anti-tells from the reduced
knowledge base in the previous section to try to transfer

Dataset
Number

of Images
Raw

Acc (%)
Reasoned
Acc (%)

Overall 180788 74.5 75.5
Model Trains 85565 97.8 98.0
Real Trains 95223 53.7 55.3
F1 7375 91.5 91.6
F2 78190 98.3 98.5
R1 51861 58.2 59.1.5
R2 43362 48.2 50.1

Table 3: Accuracy of Corrections Using Modified Feature-
Selection Based Knowledge Base

some of the extra accuracy from the real trains to the model
trains. We specifically worked with removing the anti-tells
with the top scores: moving foliage and side steam.
The results of this are below.

Thus we find that we get very modest improvements in
each of the datasets at significant cost to the overall accuracy

7 Conclusion
We have demonstrated the adding a reasoning module has
the capacity to improve the raw classification results given
by CLIP. The real-world consequence of this is that in situ-
ations where a classifier needs to adapt quickly, our system
enables this much more quickly then would be possible by
retraining a purely neural system, even if sufficient data were
at hand. We thus allow for dynamically configurable classi-
fiers which can handle even somewhat subtle classification
tasks.

References
Amizadeh, S.; Palangi, H.; Polozov, A.; Huang, Y.; and
Koishida, K. 2020. Neuro-symbolic visual reasoning: Dis-
entangling. In International Conference on Machine Learn-
ing, 279–290. PMLR.
Anderson, M. L.; Gomaa, W.; Grant, J.; and Perlis, D. 2008.
Active logic semantics for a single agent in a static world.
Artificial Intelligence, 172(8-9): 1045–1063.
Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zit-
nick, C. L.; and Parikh, D. 2015. Vqa: Visual question an-
swering. In Proceedings of the IEEE international confer-
ence on computer vision, 2425–2433.
Armstrong, M. 2017. CF2105 Best Train Video
Clips. YouTube. https://www.youtube.com/watch?v=
1XG0QoXbshU.
Armstrong, M. 2019. Steam Trains Galore 7! YouTube.
https://www.youtube.com/watch?v=5yVqfuPE7 8.
Bao, H.; Wang, W.; Dong, L.; Liu, Q.; Mohammed, O. K.;
Aggarwal, K.; Som, S.; and Wei, F. 2021. Vlmo: Uni-
fied vision-language pre-training with mixture-of-modality-
experts. arXiv preprint arXiv:2111.02358.
Bochkovskiy, A.; Wang, C.-Y.; and Liao, H.-Y. M. 2020.
Yolov4: Optimal speed and accuracy of object detection.
arXiv preprint arXiv:2004.10934.



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Brown, G.; Pocock, A.; Zhao, M.-J.; and Luján, M. 2012.
Conditional likelihood maximisation: a unifying framework
for information theoretic feature selection. The journal of
machine learning research, 13: 27–66.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; et al. 2020. An image is worth 16x16
words: Transformers for image recognition at scale. arXiv
preprint arXiv:2010.11929.
Elgot-Drapkin, J.; Kraus, S.; Miller, M.; Nirkhe, M.; and
Perlis, D. 1999. Active logics: A unified formal approach
to episodic reasoning. Technical report.
Goldberg, M. D. 2019. alma-2.0. GitHub. https://github.
com/mclumd/alma-2.0.
Goldberg, M. D. 2022. Time-Situated Metacognitive Agency
and Other Aspects of Commonsense Reasoning. Ph.D. the-
sis.
Gu, Q.; Kuwajerwala, A.; Morin, S.; Jatavallabhula, K. M.;
Sen, B.; Agarwal, A.; Rivera, C.; Paul, W.; Ellis, K.; Chel-
lappa, R.; et al. 2024. Conceptgraphs: Open-vocabulary
3d scene graphs for perception and planning. In 2024
IEEE International Conference on Robotics and Automation
(ICRA), 5021–5028. IEEE.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep resid-
ual learning for image recognition. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, 770–778.
Helwe, C.; Clavel, C.; and Suchanek, F. M. 2021. Reason-
ing with transformer-based models: Deep learning, but shal-
low reasoning. In 3rd Conference on Automated Knowledge
Base Construction.
Kafle, K.; and Kanan, C. 2017. Visual question answering:
Datasets, algorithms, and future challenges. Computer Vi-
sion and Image Understanding, 163: 3–20.
Park, J. S.; Bhagavatula, C.; Mottaghi, R.; Farhadi, A.; and
Choi, Y. 2020. Visualcomet: Reasoning about the dynamic
context of a still image. In Computer Vision–ECCV 2020:
16th European Conference, Glasgow, UK, August 23–28,
2020, Proceedings, Part V 16, 508–524. Springer.
Perlis, D.; Brody, J.; Kraus, S.; and Miller, M. J. 2017. The
Internal Reasoning of Robots. In COMMONSENSE.
Purang, K. 2001. Alma/carne: implementation of a time-
situated meta-reasoner. In Proceedings 13th IEEE Interna-
tional Conference on Tools with Artificial Intelligence. IC-
TAI 2001, 103–110. IEEE.
Radford, A.; Kim, J. W.; Hallacy, C.; Ramesh, A.; Goh, G.;
Agarwal, S.; Sastry, G.; Askell, A.; Mishkin, P.; Clark, J.;
Krueger, G.; and Sutskever, I. 2021. Learning Transfer-
able Visual Models From Natural Language Supervision. In
Meila, M.; and Zhang, T., eds., Proceedings of the 38th In-
ternational Conference on Machine Learning, volume 139
of Proceedings of Machine Learning Research, 8748–8763.
PMLR.
Russell, S.; and Norvig, P. 2020. Artificial intelligence: a
modern approach. Prentice Hall.

Sarker, M. K.; Zhou, L.; Eberhart, A.; and Hitzler, P. 2021.
Neuro-symbolic artificial intelligence: Current trends. arXiv
preprint arXiv:2105.05330.
Television, P. 2014. Nearly realistic model train layout
from France. YouTube. https://www.youtube.com/watch?v=
wMd2zyD2Ncc.
Television, P. 2022. Northern Virginia Model Railroad-
ers - One of the Largest Model Railway Layouts in the
United States. YouTube. https://www.youtube.com/watch?
v=1fwdwr\ VC04.
Wang, C.-Y.; Bochkovskiy, A.; and Liao, H.-Y. M. 2022.
YOLOv7: Trainable bag-of-freebies sets new state-of-
the-art for real-time object detectors. arXiv preprint
arXiv:2207.02696.
Wang, W.; Bao, H.; Dong, L.; Bjorck, J.; Peng, Z.; Liu,
Q.; Aggarwal, K.; Mohammed, O. K.; Singhal, S.; Som,
S.; et al. 2022. Image as a foreign language: Beit pretrain-
ing for all vision and vision-language tasks. arXiv preprint
arXiv:2208.10442.
Zellers, R.; Bisk, Y.; Farhadi, A.; and Choi, Y. 2019. From
recognition to cognition: Visual commonsense reasoning. In
Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, 6720–6731.
Zeng, Y.; Zhang, X.; Li, H.; Wang, J.; Zhang, J.; and Zhou,
W. 2022. X2-VLM: All-In-One Pre-trained Model For
Vision-Language Tasks. arXiv preprint arXiv:2211.12402.


