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Abstract

Explainable AI aims to make artificial intelligence systems
more transparent and trustworthy. A major challenge within
this field involves deciphering the complex computational
processes and understanding the activation patterns of hidden
neurons. It was previously shown, in a single example, that
an approach using formal logical reasoning in the form of
so-called concept induction can meaningfully interpret hid-
den neuron activations in a Convolutional Neural Network
(CNN) by assigning human-understandable labels. However,
as this was only demonstrated for a single trained system, it
is necessary to validate the approach using modified settings.
In this paper, we replicate the results of the approach by em-
ploying an efficient automated pipeline which improved the
processing speed and accuracy. We also extend the evalua-
tion by selecting different training targets for the classifier.
Our replication results are comparable to the previous ones
and show that the approach can assign meaningful labels to
individual neurons in the dense layer of a CNN, based on a
statistical validation.

Introduction and Related Work
Deep learning (DL), a specialized subset of machine learn-
ing (ML), has driven significant advancements in artificial
intelligence (AI), transforming various industries and do-
mains by often surpassing human performance in several
complex tasks (Narayanan et al. 2023). Its applications span
a wide range of fields, including object detection (Farhadi
and Redmon 2018; Dhillon and Verma 2020), speech recog-
nition (Li 2021; Chiu et al. 2018), natural language process-
ing (Vaswani et al. 2017; Young et al. 2018), autonomous
systems (Bojarski et al. 2016), personalized recommenda-
tions (Covington, Adams, and Sargin 2016), genomics (Ali-
panahi et al. 2015), finance (Heaton, Polson, and Witte
2017) and healthcare (Askr et al. 2023; Ajagbe and Adigun
2024) contributing to breakthroughs in both research and in-
dustry (Alzubaidi et al. 2021).

Despite remarkable advances, the black-box nature of
deep learning models poses significant challenges, particu-
larly in high-stakes applications and safety-critical systems
(Samek, Wiegand, and Müller 2017). A minor disturbance
in input during training can cause deep learning models to
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form unintended associations, which are difficult for humans
to identify due to the lack of transparency in the learning
process (Ribeiro, Singh, and Guestrin 2016). This has raised
concerns in sensitive fields such as healthcare (Yang, Ye, and
Xia 2022), finance (Shah et al. 2024), and autonomous sys-
tems (Castelvecchi 2016), where understanding the rationale
behind model predictions is crucial to prevent potentially
life-threatening errors (Guidotti et al. 2018). For example,
a widely reported incident involved an autonomous vehicle
failing to accurately classify a pedestrian, resulting in a fa-
tal accident (Stanton et al. 2019). Consequently, there is a
growing need and expectation from users, society, and reg-
ulatory bodies that the actions and decisions made by these
systems should be explainable to foster trust, accountability,
and broader acceptance (Adadi and Berrada 2018; Ali et al.
2023).

In response to these concerns, Explainable AI (XAI) aims
to make artificial intelligence systems more transparent and
trustworthy (Embarak 2023). A major challenge in XAI
involves deciphering the complex computational processes
and understanding the activation patterns of hidden neurons.
Various state-of-the-art techniques have been developed to
enhance the interpretability and transparency of machine
learning models. Key approaches include feature impor-
tance analysis, model decomposition, decision trees, Local
Interpretable Model-agnostic Explanations (LIME), SHAP
values, and counterfactual explanations. Despite significant
progress, these methods face several challenges (Thakur,
Vashisth, and Tripathi 2023; Shevskaya 2021).

Previously, an approach based on formal logical reason-
ing in the form of concept induction (Sarker and Hitzler
2019; Sarker et al. 2017) – borrowed from the Semantic Web
field (Hitzler 2021) – was shown to be effective in assigning
human-understandable labels to explain hidden neuron acti-
vations in a CNN image scene recognition scenario (Dalal
et al. 2023, 2024b; Barua, Widmer, and Hitzler 2024; Dalal
et al. 2024a). The approach relies on identifying activating
(positive) and non-activating (negative) images for specific
neurons and applying concept induction over large-scale
background knowledge to discover common semantic fea-
tures that activate the neuron. By leveraging a curated ontol-
ogy derived from the Wikipedia concept hierarchy as back-
ground knowledge, this previous work demonstrated that the
method could produce explanatory categories, such as ”cross
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walk” and ”bushes” for neurons in the dense layer. However,
the initial implementation faced limitations in terms of scal-
ability and efficiency due to manual intervention and com-
putational overhead in processing large datasets. In addition,
it was a study based on only one trained CNN, in an image
scene recognition scenario with 10 scene categories.

In this paper, we present a replication and extension
of the previous approach by employing an automated
pipeline (Akkamahadevi, Dalal, and Hitzler 2024) designed
to streamline and improve efficiency. We applied the same
methodology to newer and larger sets of scene categories
to evaluate its robustness and generalizability. For the
base study see primarily (Dalal et al. 2023, 2024b). As
we discuss later, our new experiments led to similarly
strong results as the original work. For complete results
on all datasets and the top 3 solutions, please refer to
https://bit.ly/XaiReplication

Replication Experiments
1. Dataset Selection. As in the base study, we used the
ADE20k scene classification dataset (Zhou et al. 2019),
which contains a diverse set of annotated images. Different
sets of scene categories were selected and evaluated inde-
pendently, with each set processed and analyzed separately
to assess replicability of the base study.

In line with the base study, we selected the same base-
line set consisting of 10 scene categories: bathrooms, bed-
rooms, building facades, conference rooms, dining rooms,
highways, kitchens, living rooms, skyscrapers, and streets.
This set, comprising 6,187 images, was previously evaluated
manually, and we replicated the analysis to validate the orig-
inal findings and assess whether the approach remains effec-
tive when re-trained using an automated pipeline. A second
dataset consisting of 10 additional scene categories was se-
lected: airport terminals, art studios, attics, corridors, game
rooms, home offices, hotel rooms, snowy mountains, offices,
and waiting rooms. This set included 983 images and was
chosen to expand the evaluation by introducing new scene
categories beyond those used in the baseline set. A third
dataset consisting of 10 additional scene categories was se-
lected and this set included alleys, art galleries, beaches, cas-
tles, children’s rooms, closets, coasts, mountains, parks, and
parlors, with a total of 676 images.

A fourth dataset, consisting of all 30 scene categories
from the baseline, second, and third sets, was used. This
set included a total of 7,846 images and served to evalu-
ate the scalability and generalization of the model across
a broader set of scene categories. A final dataset was con-
structed by extending the previous 30 scene categories with
an additional 20 complex and varied scenes, resulting in a
total of 50 scene categories. These additional categories in-
cluded staircases, pastures, dorm rooms, nurseries, lobbies,
receptions, bars, roundabouts, houses, bridges, classrooms,
rivers, youth hostels, lighthouses, creeks, shoe shops, win-
dow seats, amusement parks, cockpits, and playrooms. This
set contained 8,741 images and was used to evaluate the in-
terpretability of the approach across a larger and more di-
verse set of scenes. Analysis for each dataset was conducted
separately, and the results are presented individually.

Datasets No. of
scenes

Training
accuracy

Validation
accuracy

Previous study 10 87.60% 86.46%
Baseline set 10 87.56% 87.50%
Set 2 10 88.48% 75.00%
Set 3 10 90.72% 89.06%
Set 4 30 78.40% 79.05%
Set 5 50 77.99% 76.88%

Table 1: Training and Validation accuracies

2. Model Training. The images in the datasets were pro-
cessed and used for training as described in the base study.
All images were standardized to ensure consistent input
quality for CNN training. This involved resizing the images
to 224x224 pixels, normalizing pixel values, and applying
data augmentation techniques. The datasets were split such
that 80% of the images in each scene category were used for
training, while the remaining 20% were reserved for extract-
ing neuron activations in subsequent step. The ResNet50V2
model architecture was selected for its proven efficiency and
robustness in handling complex image classification tasks.
Training was performed using the Adam optimizer with a
learning rate of 0.001 and categorical cross-entropy as the
loss function. The model was trained for 30 epochs, with
an early stopping applied to prevent overfitting. The train-
ing process was executed through an automated pipeline
to ensure consistency across runs. The evaluation of the
ResNet50V2 model on the ADE20K dataset demonstrated
high training and validation accuracies across different sets,
with minimal signs of overfitting (Table 1). Notably, the sec-
ond set has the validation accuracy (75%) which is lower
than the training accuracy (88.48%). However, the gap is not
significant, and the slight overfitting does not compromise
the overall model performance. The third set showed the best
overall performance, with the highest accuracy across both
training (90.72%) and validation (89.06%).

3. Neuron Activation Values and Config File Generation.
Following the training of the ResNet50V2 model, the re-
served 20% of images were passed through the model to ex-
tract neuron activation values from the dense layer. For each
neuron, the activation values were analyzed to generate two
distinct sets: positive and negative image activation sets. The
positive image activation set included a list of all images that
activated the neuron to at least 80% of its highest activation
value among all images, while the negative image activa-
tion set included a list of all images that activated the neu-
ron to at most 20% of its highest activation value or showed
no activation. This information for each neuron was com-
piled into a configuration file containing the lists of positive
and negative image sets, along with an Web Ontology Lan-
guage (OWL) file containing machine-readable background
knowledge for use in the subsequent concept induction step.
Since 64 neurons were analyzed in the dense layer, a total of
64 configuration files were generated, each specifying which
images strongly activated the neuron and which did not.

4. Concept Induction and Label Hypotheses Generation.
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In this stage, we employed the Efficient Concept Induction
Implementation (ECII) tool (Sarker and Hitzler 2019) to au-
tomatically generate semantic labels for each of the 64 neu-
rons in the CNN’s dense layer. The ECII tool utilized the
config files generated in the previous step and assigned sev-
eral human understandable semantic labels or concepts from
the background knowledge, along with an accuracy (cover-
age) score for each neuron, and we termed them “target la-
bels”. Among these labels, the top three solutions were con-
sidered for the next step of label hypothesis confirmation.

5. Image Retrieval. After generating concept labels for each
neuron using the ECII tool during the Concept Induction
stage, we proceeded to collect image data using the Py-
Google library corresponding to the top three concept la-
bels assigned to each neuron. For each neuron, the top three
concept labels were used as search queries. For example, if
neuron 0 had concept labels “building,” “skyscraper,” and
“architecture,” separate searches were conducted for each of
these labels, and 100 images were downloaded for each con-
cept label. Only images with a resolution of at least 224x224
pixels and in JPEG and PNG format were retained to ensure
consistency in image quality.

Once the images were downloaded, they were split into
two subsets: 80% of the images for each concept label were
randomly selected and used at the label hypothesis confir-
mation step, and the remaining 20% of the images were as-
signed for validating the hypotheses by statistical analysis.
This ensured that the model’s performance was evaluated on
previously unseen data, minimizing potential bias. Both the
sets were processed through the dense layer of the trained
CNN, and activation values were captured.

6. Confirmation of Label Hypotheses. For the label hy-
potheses confirmation step we used 80% of the downloaded
images. The goal of this step was to calculate the activa-
tion values for each neuron when presented with images
corresponding to its assigned concept labels (target image
set) and unrelated labels (non-target image set). Each image
was passed through the dense layer of the previously trained
CNN, and activation values were captured for all neurons.
This resulted in a table where each row represented an im-
age and each column corresponded to the activation value of
a specific neuron. For each neuron, ”target activation values”
were retrieved from images associated with its assigned con-
cept labels, whereas ”non-target activation values” were re-
trieved from images associated with the concept labels of all
other neurons. Based on these values, neurons with a target
value greater than or equal to 80% were selected for further
analysis. This threshold ensured only neurons with consis-
tently high activations were considered significant.

The Target% column of Table 2 represents the percentage
of target images that activated each neuron, while the Non-
Target% column indicates the percentage of non-target im-
ages (i.e., images corresponding to unrelated labels) that ac-
tivated the neuron. For example, Neuron 37 exhibited activa-
tion for 90% of the images associated with the label ”Hill”.
In contrast, only 47.734% of the images corresponding to
unrelated labels (i.e., non-target images) activated the neu-
ron, as shown in the Non-Target% column. Since the Tar-

get% for Neuron 37 was 90%, which is greater than the
threshold of 80%, the label hypothesis for this neuron was
confirmed. Following the same criterion, neurons with a Tar-
get% ≥ 80% were selected for further validation through
statistical analysis. As a result of this process, a list of 19
confirmed labels was generated, as shown in Table 6. Fur-
thermore, the same procedure was applied to the other two
solutions for each neuron, generating corresponding lists of
confirmed labels and will validate the label hypotheses for
each solution through statistical analysis in the next step.

7. Validation of Label Hypotheses. After selecting neu-
rons with target values greater than or equal to 80%, we
proceeded to validate the label hypotheses using the remain-
ing 20% (verification set images) of the downloaded images.
This set of images was used to independently validate the
hypotheses generated in the previous step. For each selected
neuron, we used the verification set images corresponding
to its assigned concept labels (target images) and unrelated
labels (non-target images). These images were processed
through the dense layer of the trained CNN, and the acti-
vation values were retrieved for each selected neuron. These
activation values of target and non-target images were fur-
ther processed and used for statistical analysis.

To assess whether the differences between target and non-
target activations were statistically significant, we performed
a Mann-Whitney U test (McKnight and Najab 2010) for
each selected neuron using the activation values obtained
from the verification set. This test was chosen because it is
a non-parametric test, making it suitable for comparing two
independent groups without assuming a normal distribution
of activation values. For each selected neuron, the test com-
pared the distribution of target activation values with that of
non-target activation values to determine whether the neu-
ron responded significantly more to target images than to
non-target images. The null hypothesis for the test was that
there was no significant difference between the target and
non-target activation values, while the alternative hypoth-
esis was that the neuron exhibited stronger activations for
target images. A p-value under 0.05 was considered statisti-
cally significant, leading to the rejection of the null hypoth-
esis. Neurons with significant p-values were deemed to have
confirmed label hypotheses, meaning their assigned concept
labels were strongly associated with their activations.

The results of the label hypothesis verification for Set 1,
Solution 1 are summarized in Table 6. For each selected
neuron, the percentage of activations for both target and
non-target images, as well as the corresponding mean and
median activation values and the resulting z-scores and p-
values are provided. Neurons with a p-value less than 0.05
were considered to have statistically significant differences
between target and non-target activations, confirming the va-
lidity of their assigned labels. For example, Neuron 37, asso-
ciated with the label ”Hill”, exhibited activations for 90% of
the target images and 40.09% of the non-target images. The
Mann-Whitney U test yielded z-score of 4.07 and p-value of
5.179E-05, indicating a statistical significance between tar-
get and non-target activations (p < 0.005). Hence, the label
hypothesis for Neuron 37 was confirmed.
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Discussion
During model training, Set 1 demonstrated good gener-
alization, likely due to its larger size and balanced cate-
gories. Although Sets 2 and 3 had smaller datasets, only
Set 2 showed slight overfitting, attributed to higher variabil-
ity and diverse scene categories, including visually overlap-
ping indoor scenes. In contrast, Set 3 achieved better per-
formance due to clearer and more distinct visual patterns
(e.g., beaches, mountains, parks). These results indicate that
data complexity and class variability can impact model per-
formance more significantly than dataset size alone (Ghosh
et al. 2021). Also, Set 5 demonstrates that while increasing
the dataset size helps mitigate overfitting, the classification
task becomes inherently more complex with a larger number
of categories, leading to slightly lower overall accuracy.

Regarding the replication results for the explainability
task, we observe overall that results are comparable to the
original study. Tables 3 to 5 and 7 to 9 show the correspond-
ing results. Detailed results for dataset 3 have been omitted
due to lack of space but can be found in the appendix.1 In the
original study (Dalal et al. 2024b), the correctness of 19 tar-
get labels for dense layer neurons was statistically verified.
Our replications provided 15 confimed labels for dataset 1
(i.e., the same dataset as in the original study), 17 for dataset
2, 15 for dataset 3, 19 for dataset 4, and 7 for dataset 5.
While the number of confirmed labels for the larger dataset
5 is lower (see discussion further below), our experiments
broadly confirm the findings.

We discuss some of the results in more detail: Despite
replicating the same pipeline with the same dataset and
model architecture, we observed differences in the concept
labels generated for certain neurons. For example, Neuron
22, which was previously labeled as “Skyscraper,” was as-
signed the label “Bus and Autobus” in our study (Table 1).
This variation can be attributed to the inherent randomness
in the CNN training processes (e.g., weight initialization,
data augmentation, and batch shuffling) and the sensitivity
of concept induction to minor differences in neuron acti-
vation patterns. Such differences highlight the importance
of evaluating the robustness of XAI methods under slightly
varying conditions, as even small changes can influence the
interpretability outcomes.

During the analysis of neuron activations, distinct differ-
ences in neuron specificity were observed. As shown in Ta-
ble 3, Neuron 8 (Mountain) exhibited a high target activa-
tion percentage (98.75%) alongside a low non-target acti-
vation percentage (23.045%). This indicates that the neuron
primarily responds to images associated with its assigned
concept, demonstrating high specificity and reliability. Con-
versely, Neuron 13 (Counter and Bulletin Board) showed
high activation percentages for both target (97.5%) and non-
target images (96.909%), suggesting that it responds to gen-
eral features shared across multiple categories, thereby lack-
ing specificity. These findings emphasize that neurons with
high target activation but low non-target activation are more
suitable for representing unique concepts, while neurons dis-

1Detailed results can be found in the appendix, available at
https://bit.ly/XaiReplication

playing high activations for both target and non-target im-
ages may be less reliable in distinguishing their assigned
concept. Evaluating both target and non-target activation
percentages is thus crucial for validating neuron-specific
concept labels.

Notably, during neuron verification, Neuron 13, which
was selected for verification based on its high target activa-
tion percentage, was ultimately excluded due to its high non-
target activation percentage. This resulted in a low z-score
and a non-significant p-value, indicating poor specificity for
its assigned concept. In contrast, Neuron 3 (Mountain), with
consistently low non-target activation during verification,
produced a high z-score and statistically significant p-value,
confirming its specificity for the “Mountain” concept. These
results demonstrate that high target activation alone is in-
sufficient for reliable concept labeling. The verification step
is essential to ensure that only neurons with distinct and
consistent responses to their assigned labels are validated.
This filtering process enhances the robustness of the con-
cept induction approach by excluding neurons that respond
to general features across multiple categories, thereby im-
proving the precision of neuron-specific concept representa-
tions. These observations holds true for other neurons also.

During neuron evaluation, we observed that Set 5, de-
spite including all categories from Set 4 along with 20 ad-
ditional complex scene categories, resulted in significantly
fewer neurons being selected for verification (only 8, com-
pared to 19 in Set 4). This can be attributed to increased
complexity, higher intra-class variability (Yu et al. 2023),
feature overlap (Ghosh et al. 2021), and fewer images avail-
able for the newly added categories (Rangel et al. 2024). The
limited image count likely led to insufficient feature training
and inconsistent neuron activations (Huesmann et al. 2021).

Additionally, the larger number of categories may have
likely caused neurons to activate for multiple categories, re-
ducing the number of neurons that met the criteria for se-
lection during evaluation. Notably, 7 out of 8 neurons se-
lected in Set 5 were successfully validated, indicating that
despite fewer selections, the neurons that got validated were
highly specific. Moreover, while the Mann-Whitney U test
is generally suitable for comparing distinct distributions, its
effectiveness may be reduced in scenarios with small sam-
ple sizes and overlapping activations, making it harder to
detect significant differences. These findings underscore the
importance of balancing dataset size, class representation,
and model capacity, as well as considering alternative sta-
tistical analysis or threshold adjustments to enhance the ro-
bustness of concept induction in complex datasets.

Conclusion
Our study confirmed that the concept induction method can
reliably produce meaningful labels for neurons, making it a
valuable tool in XAI. We successfully replicated the original
findings using an automated pipeline and demonstrated its
robustness across different datasets. While larger and more
complex datasets posed challenges, the approach proved ef-
fective in identifying highly specific neurons, effectively
validating the original study.
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Neuron Id Label(s) Images Coverage Target% Non-Target%
2 Fence 80 0.965 50.750 51.923
5 Sideboard and Counter 80 0.976 40.468 45.060
8 Chain and Chandelier 80 0.997 87.500 64.270
9 Skyscraper 80 0.960 97.500 62.812
14 Knife set and Toaster 80 0.976 83.750 71.145
17 Head and Right arm 80 0.954 95.000 82.031
18 Bench and Night table 80 0.983 100.000 80.911
21 Frying pan and Ornament 80 0.964 1.250 7.734
25 Night table 80 0.976 85.000 73.125
30 Pillow and Desk lamp 80 0.948 98.750 64.322
31 Dormer 80 0.910 82.500 17.760
33 Washing machine 80 0.954 75.000 61.979
37 Hill 80 0.958 90.000 47.734
39 Wheel 80 0.838 55.000 33.151
43 Paper towels and Mopboard 80 0.985 66.250 40.078
44 Mountain and Bushes 80 0.964 87.500 39.244
55 Lid and Toilet paper 80 0.993 92.500 45.104
57 Dishrag 80 0.974 20.000 35.494
58 Left hand 80 0.976 8.750 7.161
60 Seat cushion and Seat base 80 0.947 82.500 60.104

Table 2: Representative data from dataset 1, solution 1, showing evaluation results. The table lists neurons, their assigned labels,
and the percentage of target and non-target images that activated each neuron. For example, Neuron 37, associated with the label
“Hill”, was activated by 90% of target images and 47.734% of non-target images. Neurons with a target activation percentage
greater than or equal to 80% (highlighted in bold) were selected for further hypothesis validation. A total of 19 confirmed labels
were identified for this purpose.

Neuron Id Label(s) Images Coverage Target% Non-Target%
6 Hassock and Puff 80 0.954 24.500 26.544
8 Mountain 80 0.800 98.750 23.045
13 Counter and Bulletin board 80 0.912 97.500 96.909
15 Mountain 80 0.981 100.000 75.522
18 Keyboard and Computer 80 0.933 76.250 71.818
19 Billiard table and Corner pocket 80 0.902 90.000 54.340
26 Base and Base 80 0.965 82.500 65.568
27 Suitcase and Right hand 80 0.963 71.250 67.25
29 Night table and Pillow 80 0.980 48.750 41.977
31 Paddle and Television 80 1.000 96.250 86.795
43 Chairs 80 0.904 76.250 34.863
44 Data processor and Computer 80 0.885 73.750 52.113
46 Flush mount light 80 0.882 52.500 37.931
48 Mountain 80 1.000 96.250 47.568
50 Seat base and Seat cushion 80 1.000 85.000 80.068
51 Sky and Trees 80 0.861 52.500 48.704
53 Easel 80 1.000 83.750 42.977
56 Mousepad and Speaker 80 1.000 0.000 0.4772
57 Ash-bin and Ventilation shaft 80 0.942 0.000 29.25
63 Light troffer and Poster 80 0.960 92.500 71.090

Table 3: Representative data from dataset 2, solution 1, showing evaluation results. The table lists neurons, their assigned labels,
and the percentage of target and non-target images that activated each neuron. For example, Neuron 8, associated with the label
“Mountain”, was activated by 98.75% of target images and 23.045% of non-target images. Neurons with a target activation
percentage greater than or equal to 80% (highlighted in bold) were and selected for further hypothesis validation. A total of 23
confirmed labels were identified for this purpose.
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Neuron Id Label(s) Images Coverage Target% Non-Target%
2 Washing machine and Pepper 80 0.986 39.583 36.666
4 Skyscraper 80 0.929 25.781 29.021
8 Span and River water 80 0.983 8.750 36.580
11 Rock 80 0.926 66.250 24.150
12 Mountain 80 0.940 100.000 31.273
15 Computer case and Hair 80 0.991 37.500 47.570
19 Computer case and Mouse mat 80 0.995 77.500 57.169
21 Saucepan and Glass 80 0.993 88.750 60.801
24 Papers and Written document 80 0.973 98.750 66.155
26 Field 80 0.990 100.000 72.311
28 Motorcoach and Bus 80 0.888 96.250 55.731
30 Pillow 80 0.963 97.500 62.264
31 Housing lamp and Bus 80 0.995 58.750 57.735
33 Bathrobe and Bathrobe 80 0.952 91.250 47.971
34 Grip and Suitcase 80 0.913 42.500 61.179
36 Sky and Door 80 0.862 0.000 5.8490
39 Clock and Headboard 80 0.995 90.000 62.735
42 Skirting board and Baseboard 80 0.944 82.500 45.353
50 Motorcoach and Rim 80 0.975 81.250 55.424
63 Slope and Truck 80 0.992 80.000 47.264

Table 4: Representative data from dataset 4, solution 1, showing evaluation results. The table lists neurons, their assigned
labels, and the percentage of target and non-target images that activated each neuron. For example, Neuron 12, associated
with the label “Mountain”, was activated by 100% of target images and 31.273% of non-target images. Neurons with a target
activation percentage greater than or equal to 80% (highlighted in bold) were and selected for further hypothesis validation. A
total of 19 confirmed labels were identified for this purpose.

Neuron Id Label(s) Images Coverage Target% Non-Target%
4 Bushes and Lighthouse 80 0.993 68.409 60.475
6 Lighthouse and Beacon light 80 0.955 23.125 22.521
15 Power pylon 80 0.944 96.250 56.520
23 Computer and Computer case 80 0.978 77.500 47.583
24 Fauna 80 0.936 33.750 32.416
26 Fence and Sidewalk 80 1.000 31.250 38.000
28 Vale and Creature 80 0.947 92.500 74.479
30 Plates 80 0.964 28.750 32.104
31 Teacup and Buffet 80 0.982 86.250 48.083
33 Sea 80 0.950 91.250 34.145
38 Mountain pass and Mountain pass 80 0.966 91.250 60.270
39 Lock and Tapestry 80 0.984 71.250 42.479
40 Dishcloth and Soap bottle 80 0.992 12.500 20.020
44 Rock and Mortal 80 1.000 5.000 1.000
46 Jacket and Apparel 80 0.983 85.000 46.333
48 Conveyor belt and Transporter 80 0.948 11.250 15.958
52 Housing lamp and Bus 80 0.985 81.250 69.166
54 Skyscraper 80 0.939 98.750 64.291
55 Stones 80 0.972 48.750 29.229
63 Bench and Ottoman 80 0.997 18.750 27.291

Table 5: Representative data from dataset 5, solution 1, showing evaluation results. The table lists neurons, their assigned labels,
and the percentage of target and non-target images that activated each neuron. For example, Neuron 33, associated with the label
“Sea”, was activated by 91.25% of target images and 34.145% of non-target images. Neurons with a target activation percentage
greater than or equal to 80% (highlighted in bold) were and selected for further hypothesis validation. A total of 8 confirmed
labels were identified for this purpose.
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Neuron Id Label(s) Images Activations(%) Mean Median z-score p-value
targ non-t targ non-t targ non-t

8 Chain and Chandelier 20 90.00 62.91 2.74 0.66 2.54 1.19 3.76 0.000114188
9 Skyscraper 20 95.00 62.08 4.56 0.77 4.03 1.47 4.81 7.82917E-07

13 Skyscraper 20 90.00 33.12 1.88 0.00 1.93 0.49 4.96 4.5555E-09
14 Knife set and Toaster 20 75.00 69.27 0.68 0.97 1.44 1.45 -0.00 0.99224574
15 Flusher and Spigot 20 100.00 60.83 3.39 0.58 3.40 1.17 5.43 2.15761E-08
16 Button panel and Oven 20 70.00 44.16 1.79 0.00 1.56 0.89 2.40 0.008382643
17 Head and Right arm 20 95.00 80.10 2.97 2.34 3.12 2.86 0.62 0.529383471
18 Bench and Night table 20 95.00 79.58 4.34 2.17 4.13 2.46 2.92 0.003340697
22 Bus and Autobus 20 90.00 68.95 2.18 0.86 2.28 1.47 2.76 0.005037085
25 Night table 20 85.00 71.87 2.76 1.42 2.77 1.78 2.14 0.030105389
30 Pillow and Desk lamp 20 90.00 61.77 3.73 0.64 3.62 1.32 4.76 9.67604E-07
31 Dormer 20 90.00 18.43 2.69 0.00 2.36 0.24 6.13 1.36419E-18
34 Shower and Crapper 20 85.00 80.20 1.81 1.86 1.80 2.14 -0.39 0.695491568
37 Hill 20 80.00 50.52 2.46 0.01 2.66 0.86 4.07 1.4498E-05
44 Mountain and Bushes 20 90.00 39.58 3.76 0.00 3.60 0.57 5.60 2.86221E-10
46 Air conditioning and Desk lamp 20 100.00 89.37 2.13 2.45 2.15 2.64 -1.05 0.293070236
55 Lid and Toilet paper 20 85.00 45.20 2.85 0.00 2.78 0.72 4.38 1.78707E-06
60 Seat cushion and Seat base 20 70.00 59.68 2.17 0.55 2.87 1.25 2.35 0.015119106
61 Oven 20 100.00 73.75 5.23 1.31 4.93 1.84 5.87 3.07996E-09

Table 6: Verification results for dataset 1, solution 1. The table lists neurons, their assigned labels, and the percentage of target
and non-target images that activated each neuron. Additionally, it includes the mean and median activation values for both
target and non-target images, along with the corresponding z-scores and p-values obtained from the Mann-Whitney U test. For
example, Neuron 37, associated with the label “Hill”, was activated by 80% of target images and 50.52% of non-target images,
with a mean activation of 2.46 for target images and 0.01 for non-target images. The Mann-Whitney U test yielded a z-score of
4.07 and p-value < 0.05, confirming the label hypothesis for this neuron. In total, the null hypothesis was rejected for 15 out
of 19 neurons, indicating that their activations were significantly different for target and non-target images, thus confirming the
corresponding label hypotheses.

Neuron Id Label(s) Images Activations(%) Mean Median z-score p-value
targ non-t targ non-t targ non-t

8 Mountain 20 100 22.18 5.61 0.00 5.79 0.96 6.50 2.19996E-18
10 Mountain 20 100 83.81 3.93 2.02 4.06 2.15 4.95 6.77973E-07
13 Counter and Bulletin board 20 100 97.00 3.23 3.50 3.39 3.52 -0.41 0.67631451
14 Telephone set and Bed 20 75 43.09 0.85 0.00 1.59 0.69 2.97 0.001008803
15 Mountain 20 100 76.27 3.84 1.03 3.70 1.45 5.90 2.74598E-09
19 Billiard table and Corner pocket 20 100 56.45 3.06 0.36 3.62 1.11 5.61 4.90011E-09
20 Mountain 20 100 63.54 2.82 0.53 2.82 1.04 5.61 8.79696E-09
26 Base and Base 20 75 68.81 0.93 0.87 1.29 1.22 0.40 0.680186327
28 Night table 20 95 51.00 2.16 0.05 2.56 0.90 4.95 1.47888E-07
30 Pool ball and Side pocket 20 85 48.63 2.19 0.00 2.88 0.63 4.57 9.50893E-07
31 Paddle and Television 20 100 87.90 3.18 1.70 2.95 2.06 2.95 0.003092391
35 Mountain 20 100 58.54 5.43 0.39 5.44 1.45 6.32 5.90916E-11
36 Bed 20 100 80.54 4.45 1.24 4.13 1.51 6.18 5.41529E-10
38 Mountain 20 100 52.09 5.70 0.11 5.57 1.35 6.38 1.56904E-11
39 Mountain 20 100 77.54 5.00 1.27 5.09 1.80 6.09 9.0411E-10
47 Tree 20 95 84.27 2.37 1.94 2.48 2.03 1.53 0.123485702
48 Mountain 20 95 47.72 3.86 0.00 3.69 1.00 5.81 3.84833E-10
50 Seat base and Seat cushion 20 70 78.72 0.97 1.18 0.89 1.43 -1.71 0.085568449
53 Easel 20 85 42.72 0.96 0.00 1.04 0.46 3.73 3.74019E-05
54 Mountain 20 100 90.72 5.27 2.00 5.20 2.41 5.94 2.68196E-09
55 Sky 20 100 83.63 2.34 1.85 2.21 2.14 0.86 0.385680246
61 Mountain 20 100 40.90 3.34 0.00 3.43 0.79 6.29 2.16575E-12
63 Light troffer and Poster 20 95 71.27 1.96 1.52 2.06 1.81 1.27 0.196252732

Table 7: Verification results for dataset 2, solution 1. For example, Neuron 8, associated with the label “Mountain”, was activated
by 100% of target images and 22.18% of non-target images, with a mean activation of 5.61 for target images and 0.00 for non-
target images. The Mann-Whitney U test yielded a z-score of 6.50 and p-value < 0.05, confirming the label hypothesis for this
neuron. The null hypothesis was rejected for 17 out of 23 neurons, indicating that their activations were significantly different
for target and non-target images, thus confirming the corresponding label hypotheses.



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Neuron Id Label(s) Images Activations(%) Mean Median z-score p-value
targ non-t targ non-t targ non-t

9 Tap and Crapper 20 100 65.75 3.72 0.91 3.73 1.54 4.67 1.84907E-06
12 Mountain 20 100 31.88 6.33 0.00 5.94 0.67 7.42 7.85117E-19
14 Dial and Microwave oven 20 100 50.09 2.98 0.00 2.95 0.84 5.40 8.57287E-09
16 Mountain and Rock 20 85 52.92 3.35 0.11 3.03 0.82 4.43 2.88646E-06
17 Flyscreen and Flyscreen 20 95 51.22 2.08 0.11 2.32 1.12 4.00 2.21041E-05
21 Saucepan and Glass 20 90 60.75 3.55 0.54 3.49 1.19 4.50 3.42252E-06
24 Papers and Written document 20 100 65.09 2.02 0.87 2.04 1.39 2.81 0.004096266
26 Field 20 100 73.39 5.03 1.36 4.79 1.84 5.34 7.0909E-08
28 Motorcoach and Bus 20 100 56.60 3.91 0.36 3.89 1.36 5.43 1.49413E-08
30 Pillow 20 100 60.66 5.97 0.54 5.52 1.29 6.52 1.77967E-11
33 Bathrobe and Bathrobe 20 90 47.07 1.55 0.00 1.84 0.91 3.81 3.74309E-05
35 Fog bank and Mountains 20 95 72.83 4.99 1.66 4.89 2.12 4.94 6.08394E-07
37 Sea 20 85 58.49 6.31 0.58 5.90 1.73 4.57 2.17573E-06
38 Sand beach 20 95 54.24 6.06 0.26 5.50 1.00 6.77 1.20758E-12
39 Clock and Headboard 20 90 62.07 4.75 0.68 4.31 1.25 4.47 4.32903E-06
42 Skirting board and Baseboard 20 90 48.77 2.25 0.00 2.02 0.89 4.27 4.58383E-06
43 Shop window 20 95 67.26 2.95 1.35 3.38 1.82 3.56 0.000282876
50 Motorcoach and Rim 20 70 55.66 1.37 0.41 2.35 1.15 2.18 0.022226052
57 Keyboard and Monitor 20 100 53.86 3.82 0.20 3.55 1.01 5.46 9.33005E-09

Table 8: Verification results for dataset 4, solution 1. For example, Neuron 57, associated with the label “Keyboard and Moni-
tor”, was activated by 100% of target images and 53.86% of non-target images, with a mean activation of 3.82 for target images
and 0.20 for non-target images. The Mann-Whitney U test yielded a z-score of 5.46 and a p-value < 0.05, confirming the label
hypothesis for this neuron. In total, the null hypothesis was rejected for 19 out of 19 neurons, indicating that their activations
were significantly different for target and non-target images, thus confirming the corresponding label hypotheses.

Neuron Id Label(s) Images Activations(%) Mean Median z-score p-value
targ non-t targ non-t targ non-t

15 Power pylon 20 95.00 54.33 2.39 0.34 2.43 1.55 3.04 0.001425796
28 Vale and Creature 20 100.00 73.91 4.30 2.07 4.07 2.46 3.44 0.0005045
31 Teacup and Buffet 20 85.00 45.41 2.38 0.00 2.50 0.96 3.78 3.6779E-05
33 Sea 20 75.00 33.25 4.82 0.00 3.91 0.75 4.32 2.9295E-07
38 Mountain pass and Mountain pass 20 85.00 61.08 3.73 0.76 3.67 1.56 3.07 0.00157004
46 Jacket and Apparel 20 75.00 46.58 2.35 0.00 2.04 1.14 2.71 0.003227966
52 Housing lamp and Bus 20 85.00 68.08 1.30 1.30 2.39 2.02 1.08 0.269217753
54 Skyscraper 20 100.00 63.58 3.94 0.95 3.96 1.58 4.21 1.6138E-05

Table 9: Verification results for dataset 5, solution 1. For example, Neuron 54, associated with the label “Skyscraper”, was
activated by 100% of target images and 63.84% of non-target images, with a mean activation of 3.94 for target images and
0.95 for non-target images. The Mann-Whitney U test yielded a z-score of 4.21 and a p-value < 0.05, confirming the label
hypothesis for this neuron. In total, the null hypothesis was rejected for 7 out of 8 neurons, indicating that their activations were
significantly different for target and non-target images, thus confirming the corresponding label hypotheses.
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