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Abstract
Multimodal models typically combine a powerful large lan-
guage model (LLM) with a vision encoder and are then trained
on multimodal data via instruction tuning. While this pro-
cess adapts LLMs to multimodal settings, it remains unclear
whether this adaptation compromises their original language
reasoning capabilities. In this work, we explore the effects of
multimodal instruction tuning on language reasoning perfor-
mance. We focus on LLaVA, a leading multimodal framework
that integrates LLMs such as Vicuna or Mistral with the CLIP
vision encoder. We compare the performance of the origi-
nal LLMs with their multimodal-adapted counterparts across
eight language reasoning tasks. Our experiments yield several
key insights. First, the impact of multimodal learning varies
between Vicuna and Mistral: we observe a degradation in
language reasoning for Mistral but improvements for Vicuna
across most tasks. Second, while multimodal instruction learn-
ing consistently degrades performance on mathematical rea-
soning tasks (e.g., GSM8K), it enhances performance on com-
monsense reasoning tasks (e.g., CommonsenseQA). Finally,
we demonstrate that a training-free model merging technique
can effectively mitigate the language reasoning degradation
observed in multimodal-adapted Mistral and even improve
performance on visual tasks.

Introduction
Multimodal LLMs (MLLMs) have gained significant atten-
tion due to their ability to integrate various forms of data,
allowing them to perform tasks that require both image and
language understanding (Li et al. 2023)One common ap-
proach to building MLLMs is to connect a powerful LLM
with a vision encoder (Radford et al. 2021) through an inter-
mediate module, followed by multimodal instruction tuning
(Wang et al. 2024). This has enabled MLLMs to excel in tasks
such as visual question answering (Antol et al. 2015)and im-
age captioning (Lin et al. 2014)by integrating and interpreting
both visual and textual inputs (Liu et al. 2024a)While this
process equips the model with multimodal capabilities, it
may also impact language performance (Huang et al. 2023).

In this work, we study the behavior of MLLMs on lan-
guage reasoning tasks and aim to answer the question: “How
does multimodal instruction learning affect language reason-
ing performance?”. The investigation of this question can
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lead to practical guidelines for the deployment of MLLMs
in real-world applications such as chatbots, where the user
can ask a question purely in language or optionally upload
an image to accompany their query. Few prior studies have
explored this question, with only a limited number of meth-
ods proposed for mitigating language degradation (Zhang
et al. 2024). Our work extends this line of research by ex-
ploring how the choice of the base LLM affects the degree
of language reasoning degradation during MLLM training,
and whether this phenomenon can be effectively mitigated
without the need for additional model training.

We evaluate MLLMs on a broad range of vision and lan-
guage reasoning tasks, leading to two major observations.
First, the impact of multimodal instruction tuning varies
greatly depending on the choice of base LLM. We observe
a significant erosion of language reasoning capabilities for
LLaVA-Mistral, while LLaVA-Vicuna largely retains its per-
formance and even outperforms the base Vicuna LLM on
some tasks. Second, the impact of multimodal instruction
tuning on a single model’s performance is not uniform across
tasks. In particular, we find that common-sense reasoning
improves and mathematical reasoning degrades after visual
instruction tuning. In light of these findings, we propose
a simple training-free method based on model merging (Il-
harco et al. 2022) to mitigate degradation of MLLM language
reasoning while preserving or even improving multimodal
capabilities. Our experiments show that model merging tech-
niques can effectively prevent language reasoning degrada-
tion while also improving performance on multimodal tasks.

Background & Related Work
Liu et al. (2024b) used a synthetic dataset of multimodal
language-image instructions generated by GPT-4 to train
LLaVA, an MLLM which combines the CLIP (Radford et al.
2021) vision encoder with a pre-trained Vicuna (Zheng et al.
2024) LLM. Using a projection layer to encode image repre-
sentations in the word embedding space of the LLM, LLaVA
learns via its visual instruction tuning to integrate informa-
tion across both modalities. This can be viewed as a form of
domain adaptation, as the weights of the pre-trained LLM
are updated as it learns to integrate representations from
the vision encoder. Liu et al. (2024a) further extended the
LLaVA visual instruction tuning dataset to incorporate other
academic task-oriented data. A variety of datasets have been
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developed for visual instruction tuning of other MLLMs (Bai
et al. 2023)

Degradation of language reasoning performance in
MLLMs has been observed in a limited number of prior
studies. MLLMs such as DeepSeek-VL (Lu et al. 2024) and
Kosmos-1 (Huang et al. 2023) have been compared to their
corresponding base LLMs on text-only tasks, with mixed
results showing that MLLMs can perform better or worse de-
pending upon the benchmark. Zhang et al. (2024) compare Vi-
cuna (Zheng et al. 2024) and Qwen (?) LLMs to their MLLM
counterparts trained with different vision encoders, finding
varying degrees of language reasoning degradation. The use
of interleaved image-text data as well as text-only examples
when training MLLMs has been shown to help mitigate per-
formance degradation on language tasks (McKinzie et al.
2024)In contrast to these prior studies, our work investigates
how the choice of the base LLM influences the phenomenon
of language reasoning degradation when MLLMs are trained.
Whereas previously proposed methods for mitigating this
effect rely on introducing new data our modules during train-
ing, we propose a simple model merging approach which can
effectively recover performance in text-only tasks without
requiring any additional training.

Model merging is a popular and promising technique to
combine the strengths of different models through aggrega-
tion of their parameters, allowing for improved generalization
and performance. The task arithmetic framework (Ilharco
et al. 2022) attempts to combine the capabilities of multiple
(possibly fine-tuned) models without catastrophic forgetting.
This is done by computing task vectors – the differences in
weights between models, then adding or subtracting these
task vectors to an initial set of parameters to induce learning
or forgetting with respect to a given direction in weight space.
The TIES approach (Yadav et al. 2023) builds upon this ap-
proach by only considering the largest entries in the task
vector as candidates for merging, and uses a sign-consensus
algorithm to reduce task interference. In our setup, we com-
pute the task vector representing natural language proficiency
(a Mistral LLM), and add it to the instruction tuned LLM to re-
cover any degraded natural language performance caused by
visual instruction tuning. In our experiments, we investigate
to what degree model merging is effective for Mistral-based
MLLMs by scaling the contribution of the task vector to the
merged model.

Experiments
Analyzing Language Reasoning Degradation in
LLaVA Models
Experimental Details. We focus our analysis on three
MLLMs sharing a common architecture: LLaVA-1.5, LLaVA-
1.6, and LLaVA-1.6-Mistral. LLaVA-1.5 and LLaVA-1.6 are
both derived from the Vicuna-1.5 LLM , but LLaVA-1.6
supports higher resolution images and was trained on an
improved visual instruction tuning dataset. LLaVA-1.6 and
LLaVA-1.6-Mistral are identical except that the latter was
derived from the Mistral LLM (Jiang et al. 2023). Our choice
of these MLLMs is motivated by the desire to determine
whether differences in language degradation can be attributed

to the choice of the base LLM or the datasets used for visual
instruction tuning. We utilize the language model evaluation
harness framework (Gao et al. 2024) to evaluate LLM and
MLLM performance on 8 language datasets: ARC-E (Clark
et al. 2018), Race-H (Lai et al. 2017), OpenBookQA (Mi-
haylov et al. 2018), GSM8k (Cobbe et al. 2021), Hellaswag
(Zellers et al. 2019), MMLU (Hendrycks et al. 2021), Com-
monsenseQA (Talmor et al. 2018), and Winogrande (Sak-
aguchi et al. 2021). We keep the evaluation strategy fixed
across models for each dataset, where we prompt each model
in a zero-shot fashion without chain of thought. The only
exception is GSM8K, which is evaluated as 8-shot with chain
of thought.

For vision tasks, we evaluate each MLLM on five different
visual tasks: GQA (Hudson and Manning 2019), MMBench
(Liu et al. 2023), VizWizVQA (Gurari et al. 2018), and the
Perception and Cognition tasks from the MME benchmark
(Fu et al. 2023). For MMBench, we use only its English sub-
set as the test set. We evaluate model performance using the
official metrics for each dataset. To perform the evaluation,
we make use of the open-source lmms eval library We keep
the evaluation strategy fixed across models for each dataset.
For merged models, we reattach the standard vision encoder
to recreate a complete VLM before evaluation.

We utilize the corresponding evaluation metrics as im-
plemented in the language model evaluation harness and
lmms eval for language and vision tasks respectively. To
evaluate the language reasoning performance of MLLMs in
the absence of visual input, we extract the LLM weights and
evaluate the resulting model in an identical fashion to the
Vicuna and Mistral base LLMs.

Results. Figure 1 (a) compares the performance of MLLMs
to their corresponding LLMs on the eight language reasoning
tasks. We can see that LLaVA-1.6-Mistral scores lower than
Mistral across all tasks except CommonsenseQA, whereas
LLaVA-1.5 and LLaVA-1.6 perform similar to or better than
Vicuna on most tasks except GSM8k. Notably, Mistral out-
performs Vicuna, suggesting that stronger LLMs may ex-
perience more language degradation after visual instruction
tuning. LLaVA-1.5 and LLaVA-1.6 performed similarly, in-
dicating that choice of the base LLM has a stronger influence
on language degradation than differences in visual instruc-
tion tuning datasets. Two additional commonalities are ev-
ident in these results. First, all MLLMs exhibit significant
performance degradation on the GSM8K math reasoning
dataset. Second, all MLLMs significantly outperform their
corresponding LLM on CommonsenseQA. This indicates
language reasoning degradation is not uniform across tasks,
and that performance in some domains (e.g., commonsense
reasoning) may actually improve after visual instruction tun-
ing. We posit that some text-only tasks benefit from visual
instruction tuning when the required reasoning type requires
visual understanding of the world. In contrast, other tasks
which are unrelated to visual comprehension are more likely
to experience degradation.

Human Evaluation of CommonsenseQA. To the best of
our knowledge, prior studies which have observed language
degradation in MLLMs have not investigated the inverse
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Figure 1: (a) Comparison of the performance of Mistral and Vicuna LLMs on eight language reasoning tasks with their
corresponding LVLMs. (b) Average percentage of performance changes across 8 language tasks and 5 vision tasks using different
merging weights.

effect we found for the CommonsenseQA dataset, where
all MLLMs outperform their LLM counterparts. To better
understand why this is the case, we analyzed the types of
questions for which the MLLM was correct while its corre-
sponding LLM was incorrect. For each MLLM, we sampled
20 questions where it produced a correct answer on Com-
monsenseQA while the corresponding base LLM did not,
resulting in a total of 60 samples. We then categorized these
questions into five groups: commonsense physical locations,
object-action associations, physical appearance and charac-
teristics, situational or event-based commonsense, and other.
For commonsense physical locations, the questions typically
involve scenarios where specific actions or objects commonly
occur. Object-action associations comprises questions about
objects and their associated functions or behaviors. The phys-
ical appearance and characteristics category involves ques-
tions about the external features of objects. Situational or
event-based commonsense samples are questions about com-
mon events or scenarios that can be visually represented.
We also include other: a category for questions where it is
difficult to directly link the knowledge involved to visual in-
formation, as these questions are often abstract or conceptual.
One possible explanation for questions belonging to other is
that some abstract concepts are indirectly acquired through
visual training, which help improve the model’s performance.
Our analysis reveals that in 60% of these cases, the relevant
knowledge or context can be presented visually, which may
explain why multimodal instruction fine-tuning leads to bet-
ter performance. In Table 1, we provide an example for each
category along with a possible visual representation of the
relevant knowledge. Our findings suggest that language mod-
els can acquire commonsense knowledge not only through
text-based pretraining but also through visual information,
which can then be applied to text-only tasks, particularly for
knowledge that can be conveyed both textually and visually.

Mitigating Language Reasoning Degradation with
Model Merging
Mitigating the phenomenon of language reasoning degrada-
tion is important. Prior studies have proposed to mitigate lan-
guage reasoning degradation through various training strate-
gies, such as interleaved image-text data, text-only examples,
and extra modules to compensate for attention shifts. In con-
trast, we explore a simpler model merging strategy which
requires no additional training.

Model Merging Overview There are multiple well-studied
ways to combine model parameters, many of which utilize
the task-arithmetic framework that specifies a set of fine-
tuned models to be merged back into a base model. One
straight-forward approach is to linearly interpolate between
the parameter vectors, weighted by some hyperparameter α.
Another approach is to consider that the differences between a
fine-tuned model and a base model can be attributed to knowl-
edge about the fine-tuning task. Thus, the difference between
the fine-tuned model and the base model can be treated as a
vector that points in the direction of a given task, this is the
essence of the task arithmetic framework. In this work we
leverage a task-arithmetic inspired method called TIES (Ya-
dav et al. 2023). The TIES merging algorithm consists of four
steps: computing the task vector, TRIM, ELECTSIGN, and
MERGE. First, a task vector is computed as the difference be-
tween the fine-tuned model and the base model. In the TRIM
step, redundant parameters are pruned by selecting the top-k
entires in the task vector with the highest magnitudes, setting
the rest to zero. The ELECTSIGN method resolves any sign
conflicts with respect to a specific parameter within the set of
task vectors. One option for ELECTSIGN is to perform a ma-
jority vote. In our case, we have only one task vector, and the
ELECTSIGN step is skipped. Finally, MERGE is performed
as a weighted sum of the task vector(s) as the base model.
In our setup, we only retain the TRIM and MERGE steps
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Category % Question Visual Representation

Commonsense Physical
Locations

33% Where do cars usually travel at very high speeds? The inside of a car, showing a highway
and the speedometer.

Object-Action Associa-
tions

10% Some food can be stored at room temperature until you
open it, then you should keep it in what?

Canned food being placed in a refrigera-
tor after opening.

Physical Appearance and
Characteristics

7% A statue that shoots liquid is called a what? A fountain statue with water flowing from
it.

Situational or Event-based
Common Sense

10% Joe’s cat smelled something delicious and jumped into
this, causing him to panic and fear for its life. Where
might it have jumped?

A kitchen stove or an oven, with the cat
in a risky situation.

Others 40% What does someone have that causes them committing
murder?

N/A

Table 1: Examples of question categories with potential visual representations.

from TIES, with ELECTSIGN being a noop. In our case, to
merge the parameters of the Mistral base LLM (θllm) into the
LLaVA-Mistral VLM language model (θvlm), we compute a
task vector T defined as T = θvlm − θllm. The task vector
captures the relevant differences between the two models,
but may also contain information about parameters that have
been adapted to handle vision-related tasks, which we want to
preserve. We hypothesize that the largest entries of T corre-
spond to parameters that were critical for language modeling
but degraded due to visual instruction tuning. Therefore, in
our experiments we mask the bottom-K% of entries of T ,
taking only the top-K entries as candidates for merging; we
denote the pruned task vector as T̂ . Finally, the task vector is
combined with θvlm as: M = αT̂ +θvlm. In our experiments
we vary both α and K, the results can be seen in figure (fig. 1).
For all experiments involving model merging, we utilized the
Mergekit library (Goddard et al. 2024) and selected the TIES
method (Yadav et al. 2023) to perform the merge. We focus
our investigation of model merging on LLaVA-1.6-Mistral,
as it exhibited the greatest and most consistent language rea-
soning degradation relative to its base LLM. Figure 1 (b)
shows the result of utilizing increasing amounts of merging
between this MLLM and its base LLM. As the weight propor-
tion (x-axis) increases, more weight is being given to the base
LLM during the model merging. As expected, we observe
that performance on language tasks among merged models
approaches that of the base LLM as the weight proportion
increases. In contrast, increasing weight proportion decreases
the performance of the merged models on visual reasoning
tasks, as the MLLM is deviating further from its original state
after visual instruction tuning.

These results show that the merging weight proportion
can be tuned to optimally balance visual reasoning capabili-
ties and performance in text-only tasks. This hyperparameter
can be set based on the targeted use cases for the MLLM to
optimize desired performance, without needing to perform
any additional training of the model. Our results show that
smaller weight proportions (e.g., 0.1) can effectively recover
most of the degraded performance across language reason-
ing tasks without significantly disrupting the MLLM’s visual
reasoning capabilities. Surprisingly, we find that this amount

of model merging actually increases performance on three
out of the five visual reasoning tasks relative to the original
LLaVA-1.6-Mistral model. We also find similar improve-
ments in visual reasoning capabilities when smaller weights
are used to merge LLaVA-1.5 and LLaVA-1.6 with Vicuna.
We hypothesize that multimodal tasks require language rea-
soning in addition to visual perception, which explains why
performance can improve when merging the MLLM with its
corresponding LLM. These results demonstrate the benefits
of merging for preserving language reasoning and multi-
modal capacity.

Conclusion
Our study reveals how multimodal instruction tuning of foun-
dation models can lead to undesired language reasoning
performance degradation. We observed that choice of the
base LLM prior to visual instruction tuning is more signifi-
cant than differences in training datasets in influencing the
phenomenon of language reasoning degradation, and that
stronger LLMs experience a greater degree of degradation.
Moreover, language degradation is not uniformly exhibited
across datasets, with certain tasks such as commonsense rea-
soning actually exhibiting the inverse effect. We proposed
a simple training-free model merging strategy which can
effectively counteract language degradation in MLLMs, of-
fering the ability to customize the balance between language
& visual reasoning performance without requiring any ad-
ditional training. We believe this points to model merging
as a promising direction for future research on mitigating
undesired performance regressions.
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