
PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Towards Determining How Deep Neural Models Learn to Reason

Anthony Marchiafava, Atriya Sen
Oklahoma State University

anthonymarchiafava@gmail.com, atriya@atriyasen.com

Abstract

Large Language Models (LLMs) are well known to per-
form poorly on tasks involving reasoning, including deduc-
tive, inductive, abductive, and spatial reasoning. This is evi-
denced by many existing benchmarks. While techniques such
as chain-of-thought prompting and inference computation at-
tempt to improve reasoning performance, it is necessary to
assess whether large models are ultimately ”memorizing” an-
swers to the questions being used to assess their purportedly
learnt reasoning capabilities. In this short paper, we describe
a work in progress that aims to investigate the innate reason-
ing processes of large models by generating new questions
that require deductive reasoning to answer. Initially, we train
from scratch and then assess the ability of a recurrent deep
neural model to make such a binary decision. We then dis-
cuss how our preliminary results bear on the hypothesis that
some deep neural models can indeed learn to reason in the ab-
sence of memorization and semantic shortcuts, and conclude
by discussing future work.

Code — https://github.com/rAIson-Lab/cnf-classification-
with-rnn

Motivation
Numerous existing datasets illustrate the performance of
Large Language Models (LLMs) on tasks in the Natural
Language Processing (NLP) domain that require the model
to correctly reason, implicitly or explicitly. This ability, and
especially the ability of LLMs and other deep neural models
to explain their reasoning in a human–understandable fash-
ion, is an essential Explainable AI goal for achieving human
trust in conclusions drawn by AI systems. Existing evalu-
atory datasets include those based on first–order logic for-
mulae (Han et al. 2024b) and Natural Language Inference
(NLI) datasets (Bowman et al. 2015; Williams, Nangia, and
Bowman 2018; Nie et al. 2020).

There are also large deep learning models that are trained
on mathematical problems, such as Llemma (Azerbayev
et al. 2024), or focused on generating mathematical proofs,
such as Baldur (First et al. 2023). These two models are es-
pecially of note, as Llemma is a language model for mathe-
matical tasks in general as it was trained on a mathematically

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

oriented dataset. Llemma is capable of chain-of-thought
math problem solving and formal and informal mathemat-
ical proofs. Baldur is a model for generating first order logic
proofs in specific. The goal of these models is generative in
nature while our intention is to make something which is
interpretable.

Transformer–based deep language models have been used
for reasoning tasks involving generating formal proofs of
correctness (Gontier et al. 2020; Polu and Sutskever 2020).
These language models can improve performance using
techniques such as chain–of–thought prompting (Wei et al.
2024). This use of intermediate reasoning steps can help
models reason correctly on more difficult challenges. How-
ever, the performance on the metrics evaluated does not pro-
vide direct evidence that a model is in fact learning correct
& generalizable reasoning strategies. This is shown by the
GSM-Symbolic benchmark (Mirzadeh et al. 2024) which is
itself inspired by a natural language math problem dataset
(Cobbe et al. 2021). This work showed “that LLMs exhibit
more robustness to changes in superficial elements such as
proper names but are very sensitive to changes in numerical
values” when it came to solving these numerical problems
(Mirzadeh et al. 2024).

In justifying their choices specifically in the case of in-
context learning, LLMs can exhibit untrustworthy reasoning
and use shortcuts, which may lead to false conclusions. Ex-
amples of arithmetic reasoning tasks, when provided exam-
ples that were biased to always have the correct answer be
the same letter from a set of multiple choices (for example
if the correct choice is B from the options A, B, C), showed
models would select the B option on subsequent questions
instead of the correct one (Han et al. 2024a).

Further examination is necessary to provide evidence that
a model is using reasoning in a way that can be shown. The
approach we take in this short paper is as follows. We auto-
matically generate a series of propositional formulae (as de-
scribed in the following section), and use an automated the-
orem prover to determine whether each formula is a theorem
or a non–theorem. While any propositional theorem–prover
may be chosen for this task, we use the theorem prover E, as
described in the following section. Propositional logic was
chosen for simplicity; we intend to generalize to first–order
logic, as will be described in the concluding section. Ini-
tially, we train “from scratch” on our dataset, and assess the



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

ability of our recurrent deep neural model to predict whether
a propositional formula is a theorem or a non–theorem: a bi-
nary classification task.

Since this model is trained from scratch on a randomly
generated dataset consisting of logical symbols in the form
of propositional variable and therefore no semantic content,
our hypothesis is that performance on this binary classifica-
tion task indicates that our deep neural model indeed learns
reasoning strategies in the absence of memorization and se-
mantic shortcuts, providing evidence of the innate promise
of such models on reasoning tasks, despite the limitations of
the current state–of–the–art.

Methodology
Formula Generation
We chose to use propositional logic because of the ability
of that type of logic to be clearly proven or shown that no
such proof could be found. The form of the argument is the
focus here instead of the truth or falsity of propositions. Dis-
connecting the meaning of the statements from the form of
the statements allows the form of logic to be the topic of in-
terest. This allows our work to focus on whether the neural
network can learn the form of the argument. We do this to
contrast with learning the semantics of the argument.

A literal in boolean logic is a statement that is either true
or false or the negation of that sort of statement, and a clause
is either a literal or a disjunction between two literals (Rich
2008). Here our literals are treated as propositions, but the
form the logic takes in boolean or propositional logic is
the same. To create a logical formula in conjunctive nor-
mal form (CNF) one needs to either have a single clause
or have the formula made up of only the conjunction of two
or more clauses. The CNF was chosen to generate the syn-
thetic data created here because of the simplicity of the rules
to generate formulas of arbitrary length. Axioms are logical
formula we assume as true, while conjectures are logical for-
mula we are checking follow the axioms. Multiple formulas
were combined together to form axioms then another for-
mula was chosen to be a conjecture in our logical theorems.

To illustrate the following is an example of an unfound
input: (a| b)&( a| a).( a|b)&( b). > ( b|a)&(a). We can
imagine this as saying (a or not b) and (not a or not a) as
one axiom, another axiom would be (not a or b) and (not b)
imply (not b or a) and a. While (b)&( a|a).( b)&(a| a). >
(b)&(b|b). is an example of an found input.

These arbitrarily created theorems could either be proven
valid or invalid. To discover which were proven valid we
used the automated theorem prover E. This theorem prover
is a sound and complete prover for clausal first order
logic with equality that also works with propositional logic
(Schulz 2002). This theorem prover was used on the syn-
thetic statements that were generated in CNF. These syn-
thetic statements were provided as input to E with those
statements we chose as axioms or conjectures marked as
such. E would then provide a proof or show that the theo-
rem was not provable. This data was collected and used as
the input to a recurrent neural network which was trained to
correctly classify if the input was something that could be

proven or not.

RNN Classifier Training
The model was trained on 229,216 samples in conjunctive
normal form. There were an equal number of theorems and
non-theorems since the samples were generated syntheti-
cally.

A recurrent neural network (RNN) is a neural network
which uses the output of hidden states as additional input to
that network in subsequent input. The RNN was relatively
shallow with only one recurrent layer. We tested five vari-
ations of this shallow network by changing the number of
features in the hidden state (8, 16, 32, 64, and 128 features
respectively). For this work we used PyTorch’s default RNN
implementation modified to incorporate input padding us-
ing packing padded sequences for batches of inputs whose
lengths vary within the batch.

The data was generated by repeatedly applying these rules
to a set of input literals, “a, b”. For each literal we generated
a literal using itself or its negation. Then we exhaustively
combined each literal with every other literal using the rules
specified for CNF. Since this process is automated we can
generate any number of combinations/permutations of these
literals, negations, conjunctions, and disjunctions. Follow-
ing these rules we generated 420 unique logic statements
by applying those rules to 20 disjunctions. Using these 420
statements, we then treated each statement as an axiom and
for each statement treated it as a conjecture. This produces
176,400 unique combinations.

Then we added another axiom to each of the pre-
viously generated combinations, which produced another
73,911,600 combinations. Combining them together we
created 74,088,000 combinations. However most of these
combinations are non-theorems: conjectures that cannot be
proven from the axioms. To help create a dataset that is more
suitable for training we chose the group of samples in each
category (theorem and non–theorem), shuffled the data, and
selected a number of samples from each category equal to
the number of the smaller set (here the set of proven the-
orems). Combined together this produced a final balanced
dataset size of 229,216 (which is 114,608 samples from each
category).

We chose to balance the dataset because our simple RNN
classifier may not learn effectively from our initial highly
imbalanced dataset. In general, it should not be necessary to
produce such a balanced dataset for learning reasoning pro-
cesses, i.e., it is conceivable that a different learning strategy
could learn correct reasoning processes purely from exam-
ples of provable theorems, implicitly learning what consti-
tutes a non–theorem. However this would constitute a more
difficult learning task, so we avoid it here. In the Discus-
sions section, we discuss a generative learning approach that
always learns constructively, in the sense that even when a
proof search fails, the data comprises of constructive steps
towards that failed proof, not simply a negative label. In this
sense this system will learn to construct a proof from exclu-
sively positive examples of proof construction.

A recurrent neural network was used for this classifica-
tion task. The recurrent neural network was trained for 20



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

 

A
cc

ur
ac

y

50

60

70

80

90

100

Epoch
0 5 10 15 20

8 Hidden Units
16 Hidden Units
32 Hidden Units
64 Hidden Units
128 Hidden Units

Figure 1: Testing accuracy grouped by number of hidden neural units

epochs, with a training set of eighty percent of the data and a
testing set of twenty percent. Different iterations of the net-
work were tried, choosing the model with the highest per-
formance. We tested RNN’s with 16, 32, 64, and 128 hid-
den units. To convert the dataset strings into RNN input we
used our limited vocabulary to create an embedding (which
would include a padding character) and batched our inputs
into groups of 16, where each group is padded to be of equal
length to the longest sample in that batch. Due to the in-
put not being perfectly divisible by 16, we dropped the last
batch.

Results
The models we trained were able to accurately predict the
theorem–hood of a propositional formula, as shown in figure
1. The highest accuracy value observed was for the network
with 128 hidden units (99.4% accuracy at epoch 17).

Discussion & Future Work
Classification is an achievable task With the limited dataset
we created. With just these results, however, we cannot as-
sert that the model has actually learned logical reasoning
rules. It does, however, perform well on accuracy metrics.

Our results on the binary classification task reported here
indicate that our deep neural model indeed learns reason-
ing strategies in the absence of memorization and semantic
shortcuts, providing evidence of the innate promise of such
models on reasoning tasks, despite the limitations of the cur-
rent state–of–the–art.

The complete code and generated dataset for our exper-
iments is currently redacted in the interests of anonymity,
and will be made available upon publication under an open–
source license.

Our binary classification model is an exploratory first step
in the direction of a generative deep transformer-based AI
model that is trained not only on the evaluation from a theo-
rem prover of a formula being a theorem or a non–theorem,
but also on the generated proof of theorem–hood (or failed
proof of it). The generative model will then attempt to gen-
erate correct proofs on test propositional formulae. While
much more challenging than the work reported here, this is
natural next step, given the almost unreasonable efficacy of
state–of–the–art generative models.

These generative models are much more complicated and
difficult to interpret than the much simpler recurrent neu-
ral network used in this work. However, since we know the
proof steps used to train the model further work in mechanis-
tic interpretability can use facts we know about our entirely
synthetically generated dataset to guide our search for inter-
preting if models we train are learning logical reasoning and
where that reasoning is happening.

Neural Networks are often described as a black box. The
internal workings of a model which is trained from ran-
dom weights using backpropagation are challenging to inter-
pret and understand. One approach to understanding this is
through using mechanistic interpretability techniques. These
techniques are used to discover the mechanisms which trans-
form inputs into outputs (Bereska and Gavves 2024). Future
work will focus on using one mechanistic interpretability
technique, feature circuits, to search for model behavior in
an automated fashion (Marks et al. 2024; Olah et al. 2020).
These and other similar techniques can produce subgraphs
or circuits of neural networks that indicate repeated behav-
ior.

We will apply these techniques to models trained with the
synthetic data generation technique shown here. This will



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

provide an opportunity to evaluate the behavior of models
where we know step by step proofs, due to the generation
of these proofs with a theorem prover. We believe that we
will detect feature circuits related to the proof steps and that
these feature circuits should be common to related proof
steps. Prior work has focused on finding circuits for large
language models like Claude (Templeton et al. 2024) but has
not aligned the circuits to a formal logic task.

Acknowledgements
We would like to thank our highly insightful reviewers for
highlighting improvements that we have incorporated into
this publication. We also thank Justin Moua for engaging
with us in discussion.

References
Azerbayev, Z.; Schoelkopf, H.; Paster, K.; Santos, M. D.;
McAleer, S. M.; Jiang, A. Q.; Deng, J.; Biderman, S.; and
Welleck, S. 2024. Llemma: An Open Language Model for
Mathematics. In The Twelfth International Conference on
Learning Representations.
Bereska, L.; and Gavves, S. 2024. Mechanistic Interpretabil-
ity for AI Safety - A Review. Transactions on Machine
Learning Research.
Bowman, S. R.; Angeli, G.; Potts, C.; and Manning, C. D.
2015. A large annotated corpus for learning natural lan-
guage inference. In Màrquez, L.; Callison-Burch, C.; and
Su, J., eds., Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, 632–642. Lis-
bon, Portugal: Association for Computational Linguistics.
Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.;
Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.;
Hesse, C.; and Schulman, J. 2021. Training Verifiers to
Solve Math Word Problems. arXiv:2110.14168.
First, E.; Rabe, M. N.; Ringer, T.; and Brun, Y. 2023. Bal-
dur: Whole-Proof Generation and Repair with Large Lan-
guage Models. In Proceedings of the 31st ACM Joint Euro-
pean Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2023,
1229–1241. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 9798400703270.
Gontier, N.; Sinha, K.; Reddy, S.; and Pal, C. 2020. Measur-
ing systematic generalization in neural proof generation with
transformers. In Proceedings of the 34th International Con-
ference on Neural Information Processing Systems, NIPS
’20. Red Hook, NY, USA: Curran Associates Inc. ISBN
9781713829546.
Han, P.; Song, P.; Yu, H.; and You, J. 2024a. In-Context
Learning May Not Elicit Trustworthy Reasoning: A-Not-B
Errors in Pretrained Language Models. In ICML 2024 Work-
shop on LLMs and Cognition.
Han, S.; Schoelkopf, H.; Zhao, Y.; Qi, Z.; Riddell, M.; Zhou,
W.; Coady, J.; Peng, D.; Qiao, Y.; Benson, L.; Sun, L.;
Wardle-Solano, A.; Szabó, H.; Zubova, E.; Burtell, M.; Fan,
J.; Liu, Y.; Wong, B.; Sailor, M.; Ni, A.; Nan, L.; Kasai,
J.; Yu, T.; Zhang, R.; Fabbri, A.; Kryscinski, W. M.; Yavuz,
S.; Liu, Y.; Lin, X. V.; Joty, S.; Zhou, Y.; Xiong, C.; Ying,

R.; Cohan, A.; and Radev, D. 2024b. FOLIO: Natural Lan-
guage Reasoning with First-Order Logic. In Al-Onaizan,
Y.; Bansal, M.; and Chen, Y.-N., eds., Proceedings of the
2024 Conference on Empirical Methods in Natural Lan-
guage Processing, 22017–22031. Miami, Florida, USA: As-
sociation for Computational Linguistics.
Marks, S.; Rager, C.; Michaud, E. J.; Belinkov, Y.; Bau, D.;
and Mueller, A. 2024. Sparse Feature Circuits: Discovering
and Editing Interpretable Causal Graphs in Language Mod-
els. arXiv:2403.19647.
Mirzadeh, I.; Alizadeh, K.; Shahrokhi, H.; Tuzel, O.; Ben-
gio, S.; and Farajtabar, M. 2024. GSM-Symbolic: Un-
derstanding the Limitations of Mathematical Reasoning in
Large Language Models. arXiv:2410.05229.
Nie, Y.; Williams, A.; Dinan, E.; Bansal, M.; Weston, J.; and
Kiela, D. 2020. Adversarial NLI: A New Benchmark for
Natural Language Understanding. In Jurafsky, D.; Chai, J.;
Schluter, N.; and Tetreault, J., eds., Proceedings of the 58th
Annual Meeting of the Association for Computational Lin-
guistics, 4885–4901. Online: Association for Computational
Linguistics.
Olah, C.; Cammarata, N.; Schubert, L.; Goh, G.; Petrov, M.;
and Carter, S. 2020. Zoom In: An Introduction to Circuits.
Distill. Https://distill.pub/2020/circuits/zoom-in.
Polu, S.; and Sutskever, I. 2020. Generative Language Mod-
eling for Automated Theorem Proving. arXiv:2009.03393.
Rich, E. 2008. Automata, Computability and Complexity:
Theory and Applications. Pearson Prentice Hall.
Schulz, S. 2002. E – A Brainiac Theorem Prover. Journal
of AI Communications, 15(2/3): 111–126.
Templeton, A.; Conerly, T.; Marcus, J.; Lindsey, J.; Bricken,
T.; Chen, B.; Pearce, A.; Citro, C.; Ameisen, E.; Jones, A.;
Cunningham, H.; Turner, N. L.; McDougall, C.; MacDi-
armid, M.; Freeman, C. D.; Sumers, T. R.; Rees, E.; Batson,
J.; Jermyn, A.; Carter, S.; Olah, C.; and Henighan, T. 2024.
Scaling Monosemanticity: Extracting Interpretable Features
from Claude 3 Sonnet. Transformer Circuits Thread.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E. H.; Le, Q. V.; and Zhou, D. 2024. Chain-
of-thought prompting elicits reasoning in large language
models. In Proceedings of the 36th International Con-
ference on Neural Information Processing Systems, NIPS
’22. Red Hook, NY, USA: Curran Associates Inc. ISBN
9781713871088.
Williams, A.; Nangia, N.; and Bowman, S. 2018. A Broad-
Coverage Challenge Corpus for Sentence Understanding
through Inference. In Walker, M.; Ji, H.; and Stent, A., eds.,
Proceedings of the 2018 Conference of the North American
Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Papers),
1112–1122. New Orleans, Louisiana: Association for Com-
putational Linguistics.


