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Abstract
Using off-the-shelf large language models (LLMs) in man-
ufacturing decision-making often results in broadly compe-
tent but noisy behavior. Previous approaches that employ
LLMs for decision-making struggle with complex reason-
ing tasks that require deliberate cognition over fast and intu-
itive inference. These approaches often report issues related
to insufficient grounding, such as human-level but unhuman-
like behaviors. Here, we move toward addressing this gap
and ask whether language models can learn from cogni-
tive models for human-like decisions. We introduce VSM-
ACTR 2.0, an ACT-R cognitive model for manufacturing so-
lutions, and LLM-ACTR, a developing framework for knowl-
edge transfer from cognitive models to language models. The
ACT-R cognitive architecture is designed to computationally
model the internal mechanisms of human cognitive decision-
making. LLM-ACTR extracts knowledge from ACT-R’s inter-
nal decision-making processes, represents it as latent neural
representations, and injects this content vector into trainable
LLM adapter layers. It then fine-tunes the LLMs for down-
stream decision-making predictions. We find that, after fine-
tuning and adding the content vector to the activations during
the LLM forward pass, the LLM offers better representations
of human decision-making behaviors on a novel Design for
Manufacturing problem, compared to an LLM-only model
that employs chain-of-thought reasoning strategies. Taken to-
gether, the results open up new research directions for equip-
ping LLMs with the necessary knowledge to computationally
model and replicate the internal mechanisms of human cog-
nitive decision-making.

Code — https://github.com/SiyuWu528/llm-actr

Introduction
The goal of Industry 4.0 is to create ”intelligent factories”
where technologies enable smart decision-making through
cooperation among humans, machines, and sensors, exem-
plified by smart scheduling using sensor data (Zhong et al.
2017; Serrano-Ruiz, Mula, and Poler 2021). A value stream
map (VSM) is vital for smart scheduling in manufactur-
ing (Rahani and Al-Ashraf 2012), but plant managers of-
ten struggle with its applications due to its intertwined vari-
ables. When they resort to off-the-shelf language models for

*Work done during an internship at Bosch R&T center.
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solutions, it often leads to unhuman-like and noisy predic-
tions (Makatura et al. 2024). These challenges hinder opti-
mal decision-making in production management.

Toward trustworthy decision-making by LLMs in man-
ufacturing, we ask whether language models can learn
from cognitive models for human-like decisions. This pa-
per proposes LLM-ACTR as an initial solution. LLM-ACTR
builds upon VSM-ACTR 2.0 (hereafter referred to as VSM-
ACTR), which was developed from VSM-ACTR 1.0 (Wu,
Oltramari, and Ritter 2024). This is an ACT-R cognitive
model that simulates human-like decision-making behavior
using domain knowledge from VSM. ACT-R, a representa-
tive cognitive architecture (CA) (Laird 2012; Anderson et al.
2004), encompasses perception, memory, goal-setting, and
action, and has been pivotal in developing synthetic agents
for learning and training, e.g., (Anderson et al. 2019; Martin,
Gonzalez, and Lebiere 2004). VSM-ACTR executes tasks
that mimics human decision-making behaviors, retrieves
similar knowledge representations, and simulates the rein-
forcement learning processes as decision-makers progress
from novice to expert. LLM-ACTR learns ACT-R model do-
main knowledge with LLMs for decision-making tasks. The
knowledge transfer methods follow the hypothesis of how
LLMs generate the next token prediction: LLMs calculate
semantically meaningful primitives in the early layers of the
residual stream, which are converted into a high-level execu-
tion plan in the middle layers, and then into concrete tokens
in the final layers (Vaswani et al. 2017; Brown et al. 2020;
Raschka 2024).
LLM-ACTR (Fig. 1) uses the content vector representa-

tion of ACT-R model’s full decision-making reasoning steps
(data part a), along with the decisions of the cognitive model
on the task at scale (data part b). The content vector θ ∈ Rd

is added to an early layer ℓtarget of the residual stream of
the transformer. θ was obtained through semantic extraction
and dimension reduction of the embedding space of cogni-
tive decision-making steps, aiming to introduce meaningful
early perturbation through differentiate activation of layer
ℓtarget. Using the modified LLM as the base model, it ac-
cesses the last contextualized embedding and obtains the
masked embedding. A classification layer is then added on
top for fine-tuning with the ACT-R model’s human-like de-
cisions(data part b).
LLM-ACTR transfers ACT-R model’s decision-making
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Figure 1: LLM-ACTR begins with (a) parsing consistent template prompts that reflect the decision-making task into an open-
source LLM, thereby aligning the task with the ACT-R model. (b) The content vector of the ACT-R model’s decision-making
traces (data part a) is obtained by passing traces through a sentence transformer to obtain semantic embeddings for each
timestamp. Each step’s embedding then undergoes dimensionality reduction to retain the primary components before being
concatenated into a one-dimensional vector. (c) The cognitive decision-making vector is then injected into the residual stream
with a multiplier at one of the layers of the LLM to introduce differentiated activations. (d) Using the modified LLM as the base
model, it then accesses the last contextualized embedding and obtains the masked embedding. (e) A classification layer with
softmax activation is constructed on top to form the decision-making layer. (f) Using targets of ACT-R model decisions (data
part b), the LLM is fine-tuned for the classification task in decision-making using the Low Rank Adaptation method (LoRA).

knowledge to an LLM on the task. It leverages the strengths
of both LLMs and CAs by using the natural language pro-
cessing and generative capabilities of LLMs, complemented
by the human-like learning and reasoning offered by CAs.
We then present a case study of LLM-ACTR in manufactur-
ing decision-making. The task is associated with a key as-
pect of Design For Manufacturing (DFM): enhancing prod-
uct development and optimizing production system perfor-
mance by improving time efficiency and reducing headcount
costs (Ulrich et al. 1993) (Fig.1(a) Prompt Template).

The following sections detail the VSM-ACTR cognitive
model and its real-time reasoning traces on the task, which
are then converted into domain knowledge for LLM deci-
sion augmentation. This is followed by an overview of the
LLM-ACTR, the experiments, results, and discussions.

Related Work
Relating Cognitive Psychology to Human-Like
Artificial Intelligence
Human-like artificial intelligence (HLAI) has been a goal
since the emergence of machines (McCarthy 2007). In re-
cent years, the development of transformer-based LLMs

has revolutionized HLAI, demonstrating impressive human-
level capabilities. However, LLMs sometimes fail to dis-
play human-like behavioral traits. Analyzing the areas where
LLMs currently fall short in replicating human cognition
and behavior highlights the problems in exhibiting human-
level capabilities that are unhuman-like (Dorobantu 2021),
including behavior discrepancies between LLM inference
and human reasoning (Binz and Schulz 2023; Liu et al.
2024), insufficient grounding (Yao et al. 2023), and hallu-
cination (Chakraborty, Ornik, and Driggs-Campbell 2024).

The challenges mentioned have catalyzed an integration
of cognitive psychology with LLMs, toward human-like
trustworthy LLMs. Recent studies have used cognitive psy-
chology experiments to investigate and comprehend behav-
iors in these models, focusing more on behavioral insights
than on conventional performance metrics (Binz and Schulz
2023; Coda-Forno et al. 2024b). In addition, the use of
LLMs’ neural representations has been applied in behav-
ioral psychological science research, which involves but is
not limited to prompt engineering, feature extraction, and
fine-tuning, which we cover next.

Feature Extraction. The process begins with passing text
that mirrors a psychological experiment through the open-
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source LLM to capture contextualized embeddings from the
final layer (Hussain et al. 2024). These embeddings can
be employed in various psychological experiments appli-
cations, such as predicting similarities between personality
constructs (Abdurahman et al. 2023), choices in reinforce-
ment learning (Binz and Schulz 2024), or perceptions related
to risk or health (Wulff and Mata 2023). For tasks that re-
quire sequence prediction, decoder models are preferred due
to their larger size and more extensive training data (Hussain
et al. 2024).

Zero-shot and Few-shot Learning. Zero-shot learning
enables the creation of categorical or numerical predictions,
such as evaluating sentiments on social media (dos Santos
et al. 2024), without requiring training specific to the task.
Few-shot learning extends this concept by adding minimal
supervision, such as a small number of example pairs, to
improve the accuracy of the model.

Fine-Tuning. Fine-tuning smaller LLMs for human-like
behaviors can achieve performance that matches or exceeds
that of larger models under zero- or few-shot learning con-
ditions (Hussain et al. 2024). This involves adjusting model
weights to improve task-specific outcomes. For example,
one study fine tuned BERT in zero-shot learning to predict
reinforcement learning behaviors of human subjects (Hus-
sain et al. 2024). However, the generalization of this ap-
proach is challenged by the high cost of collecting large cog-
nitive psychological datasets involving human subjects.

Common Model of Cognition, Cognitive
Architectures, and Cognitive Model
Toward integrating human-like behavioral traits into LLMs,
we use a suite of tools rooted in the Common Model of
Cognition (CMC) to provide a wider range of tasks into the
training dataset. CMC implements a unified Theory of Mind
(Newell 1994; Laird, Lebiere, and Rosenbloom 2017), a the-
oretical framework that presents a model of human cogni-
tion codified as a computational architecture. The CMC is
a brain-inspired framework validated by large-scale neuro-
science data. The CMC identifies core components and pro-
cesses fundamental to human cognition, including memory,
perception, motor actions, and decision-making. The model
assumes a cyclical process where these components interact
to produce human behavior. The CMC includes a feature-
based declarative long-term memory, a buffer-based work-
ing memory, a system for pattern-directed action invocation
stored in procedural memory, and specialized systems for
perception and action (Stocco et al. 2021).

The CMC integrates essential features from various cog-
nitive architectures (CA), which are computational frame-
works designed to capture the invariant mechanisms of hu-
man cognition. These mechanisms include functions related
to attention, control, learning, memory, adaptivity, percep-
tion, and action (Laird 2012; Anderson et al. 2019). ACT-R
is one of the representative CA designed to model human be-
haviors (Anderson 2009). ACT-R models can store, retrieve,
and process knowledge, as well as explain and predict per-
formance (Ritter, Tehranchi, and Oury 2019; Bothell 2017).

There are currently two kinds of knowledge representa-
tions in ACT-R, and they are declarative knowledge and

procedural knowledge. Declarative knowledge consists of
chunks of memory (e.g., the production line comprises five
sections), while procedural knowledge performs basic op-
erations, moves data among buffers, and identifies the next
instructions to be executed (e.g., lower defect rate will lead
to higher efficiency rate). ACT-R has been widely applied
to build models that automate decision-making tasks across
psychology and computer science, e.g., (Blessing and An-
derson 1996; Wu et al. 2023).

However, ACT-R models do not accept natural language
as input and cannot easily generalize across problems, which
limits their flexibility for decision-making. Intuitively, a so-
lution could take the best of both CAs and LLMs, e.g.,
(Sumers et al. 2024; Zhu and Simmons 2024), where ACT-R
models serve as synthetic agents to instruct LLMs. They do
this by providing knowledge of cognitive decision-making
through LLMs’ training, which includes aspects such as
learning. The trained LLMs can then be generalized to un-
seen problems.

Problem Definition: Design for Manufacturing
This paper presents a case study of training a cognitively
inspired LLM for decision-making in the design for man-
ufacturing (DFM) domain. We define the terminology that
constitutes our decision-making problem. The DFM prob-
lem setting is a prototypical manufacturing production-line
workflow, from supplier to customer, for which there exists a
VSM (Fig. 2), which allows for tracking the efficiency at dif-
ferent sectors of the process and abstracts the overall prob-
lem for mathematical modeling and optimization. Decision
candidates come from sectors such as Body Production, Pre-
Assembly, Assembly. Early sectors pose potential efficiency
problems in the workflow and may warrant optimization (tri-
angles), while later stages are governed by First-In-First-Out
(FIFO) processes. The metrics at each stage include Cycle
Time (CT), Overall Equipment Effectiveness (OEE), and/or
Mean Absolute Error (MAE). Focused on maintaining sta-
ble output for manufacturing plants, we consider plant man-
agers’ feedback alongside the VSM structure to define the
decision-making problem that aim to reduce total production
time while minimizing total defect rate increase(see Fig.1(a)
for Prompt Template). When facing unseen DFM problems,
which are yet constrained to fixed decision candidates and
unknown decision metrics. LLM-ACTR takes a natural lan-
guage question prompt, and outputs a binary decision (0 or
1) on which of two sectors, pre-assembly or assembly, re-
quires a time reduction.

VSM-ACTR, A Human-Like Decision Making
Cognitive Model with Metacognition for

Manufacturing Solutions
To investigate whether LLMs can learn from cognitive mod-
els for human-like decisions, we start by creating the cogni-
tive model for DFM problem.

Human Centered Model Design
We built VSM-ACTR, which is a rule-based ACT-R cogni-
tive decision-making model for DFM problem that imple-



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Figure 2: Value Stream Map, the yellow triangles show the
possible optimization sectors.

ments multiple problem-solving strategies, through a com-
bination of production rules.

VSM-ACTR has incorporated the meta-cognitive pro-
cesses that reflect on and evaluate the progress of chosen
strategies—with an emphasis on headcount cost evaluation,
through a reward structure that enables a process akin to
reinforcement learning. This system enables the model to
dynamically assess the impact of decisions on headcount
costs, computing a reward or penalty for each decision cycle.
These rewards or penalties then dynamically adjust the util-
ity of the productions associated with each decision-making
cycle. This helps the model to exhibit a human-like learning
progression.

VSM-ACTR integrates the prototypical decision process
with insights into how cognitive models represent differ-
ent levels of expertise, e.g., (Martin, Gonzalez, and Lebiere
2004; Blessing and Anderson 1996), categorizing users into
three levels of expertise: novices, intermediates, and experts.
Novices engage in decision-making using intuitive deliber-
ative chunks. Intermediates can manage key metrics such as
CT and OEE but struggle with the systematic analysis of in-
tertwined variables. Experts, on the other hand, make judg-
ments systematically. The cognitive model employs three
types of knowledge chunks: decisions, decision merits, and
goals. The ‘decision chunk’ encodes eight slots including
reduction time (goal), decision-making state (novice, inter-
mediate, expert), and related variables. The ‘decision merits
chunk’ holds information on sector weights, defect increases
by sector, and comparative defect rate increases. The ‘goal
chunk’ captures the initial production conditions and the ul-
timate goal of achieving the optimal decision. In addition,
the model uses 18 procedural rules driven by goal-focused
objectives across 20 states, covering actions such as choos-
ing strategies, actions, working memory management, deci-
sions, and evaluations.

Level of Expertise Mechanism
The model can learn while performing tasks through a mech-
anism leading to varying levels of expertise, as shown in
Figure 3. The model mimics human decision-making be-
havior through differentiating knowledge representations.

Declarative Memories: These memories store knowledge
that aligns with human intuition and expertise gained from
the VSM. For example, the green triangles in the figure rep-
resent a portion of the intuition used by novice decision-
makers, while the red circles contains VSM domain knowl-
edge used by intermediate decision-makers. Production
Rules: These rules capture the rational decision-making pro-
cesses observed in human subjects. The green lines illustrate
how the imaginal buffer retrieves relevant portions of the
novice declarative memory and feeds them to the novice pro-
duction rule set. Intermediate and expert decision-making
levels follow the same principle. Red and blue shapes rep-
resent their respective declarative memory chunks, and the
corresponding colored arrows show the flow of information
through their production rule sets. Finally, the goal buffer
uses the ’goal focus’ command to manipulate the different
phases of the task.

Figure 3: Level of expertise mechanism in VSM-ACTR.

The model also simulates the learning progress through
the Decision-Choice Control, which manages errors, learn-
ing, and memory via utility learning and reinforced rewards.
Novice decision-making productions start with a utility base
and include a noise setting. Each round of decisions receives
rewards or penalties, and the utility of associated produc-
tion rules updates with the adjustment of memory retention,
which depends on the time passed since the rule last fired.

Foster Metacognition to Support Learning
With the aim of making the model assess the effectiveness
of decisions while learning — akin to human metacogni-
tion, self-assessing and self-correcting in response to self-
assessment (Nelson and Narens 1994) — we consequently
developed a dynamic reward function that rewards actions
after self-evaluating the chosen strategy.

VSM-ACTR uses a Temporal Difference (TD) algorithm
from reinforcement learning (Sutton and Barto 1999) as ex-
pressed in Eqn. 1. Each production rule in the ACT-R model
has a utility—a value or strength—associated with it, which
is updated using the TD algorithm:

Eqn. 1 : Ui(n) = Ui(n− 1) + α [Ri(n)− Ui(n− 1)]
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where Ui(n) represents the value or utility of some item i
(e.g., a production) after its n-th occurrence, and Ri(n) rep-
resents the reward received on the n-th occurrence. The pa-
rameter α (0 < α < 1) controls the learning rate. If multi-
ple productions compete with expected utility values Uj , the
probability of of selecting production i is given by Eqn. 2:

Eqn. 2 : Probability(i) =
eUi/

√
2s∑

j e
Uj/

√
2s
,

where the summation over j is over all the productions that
currently have their conditions satisfied; and s is the noise.

The utilities of production are learned as the model runs,
based on the rewards or penalty that are received. Where we
designed the reward function as R(s, f(x)) that calculates
the reward at the end of each decision-making round. This
function takes two parameters: S, representing the strategy
used, and f(x), which results from headcount cost analysis,
leading to either a weighted reward or a penalty. For exam-
ple, in one decision round, a penalty of -2 is computed due
to the use of a novice strategy coupled with inefficient head-
count cost analysis. Factoring in the memory retention effect
after a 0.05 seconds step, the calculation using the TD algo-
rithm modifies the impact of the decision on the utility of the
next production as:

Ui(n+ 1) = Ui(n) + α [−2− 0.05− Ui(n)] .

This will then sequentially update the utility of the chain
of productions for the chosen strategy. We find that when
the model encounters certain types of problems where both
novice and expert strategies result in similar efficiencies in
cost assessment. In these cases, the model is prone to stay-
ing with the novice strategy and exhibits a more gradual
learning curve, similar to the tendency for people facing
bounded rationality in decision-making (Hastie and Dawes
2010), where they are likely to select the less effortful option
when faced with multiple choices that produce very similar
outcomes.

Data Collection and Evaluation
We then explain the decision-making knowledge curated
from the real-time reasoning steps of VSM-ACTR, followed
by data collection and evaluation.

VSM-ACTR Knowledge Representations
This study curated VSM-ACTR domain knowledge through
VSM-ACTR’s traces, which capture the reasoning steps in
real time using a concurrent protocol. These traces log the
cognitive operations executed by various modules at each
decision point. The traces exhibit metacognition, which in-
volves awareness and understanding of one’s own decision-
making processes. This is represented through model traces
that demonstrate the use of the imaginal buffer for access-
ing working memory, procedural memory matching and fir-
ing, and the self assessment of strategy effectiveness. Traces
also exhibit executive function (Gilbert and Burgess 2008),
which involves the evolution of decision-making results
across trials and shows how decisions adapt through learn-
ing and experience.

As shown in Table 1, the model begins by establishing the
goal (line 1) and then proceeds with a novice strategy (line
3, BRUTE). For the production rules associated with each
strategy, the utility of each production rule is updated based
on the received reward and the time since the last selection.
For instance, the reward computation based on cost analysis
(line 6) for the BRUTE choice results in a reward of -2 (line
10). Consequently, the utility of the NAIVE-CHOICE rule,
impacted by a penalty of -2.25 for the time passed since the
last selection, decreases from 3 to 1.96 (lines 14-16). As the
utility of naive strategies declines, the probability of trigger-
ing the Intermediate Strategy (lines 26-27) and the EXPERT
Strategy (lines 87-89) increases.

001 0.000 GOAL SET–BUFFER–CHUNK GOAL GOER
NIL

002 0.050 PROCEDURAL PRODUCTION–FIRED
CHOOSE–STRATEGY

003 0.100 PROCEDURAL PRODUCTION–FIRED
DECIDE–BRUTE

004 0.150 PROCEDURAL PRODUCTION–FIRED
BRUTE–DECISION

005 assembly is always a good place to reduce time!
006 0.200 PROCEDURAL PRODUCTION–FIRED HEAD-

COUNT
007 -0.01999998
008 0.250 PROCEDURAL PRODUCTION–FIRED STOP
009 this is the end of one decision making
010 Utility updates with Reward = -2.0 alpha = 0.2
011 Updating utility of production CHOOSE–STRATEGY
012 U(n-1) = 0.0 R(n) = -2.25 [-2.0 - 0.25 seconds since se-

lection]
013 U(n) = -0.45000002
014 Updating utility of production DECIDE–BRUTE
015 U(n-1) = 3.0 R(n) = -2.2 [-2.0 - 0.2 seconds since selec-

tion]
016 U(n) = 1.96
... ...
026 0.300 PROCEDURAL PRODUCTION–FIRED

CHOOSE–STRATEGY
027 0.350 PROCEDURAL PRODUCTION–FIRED

DECIDE–INTERMEDIATE
... ...
056 0.800 PROCEDURAL PRODUCTION–FIRED

CHOOSE–STRATEGY
057 0.850 PROCEDURAL PRODUCTION–FIRED

EXPERT–STRATEGY
... ...
084 Updating utility of production CHOOSE–STRATEGY
085 U(n-1) = -0.46 R(n) = 4.65 [6.0 - 1.35 seconds since se-

lection]
086 U(n) = 0.56200004
087 Updating utility of production EXPERT–STRATEGY
088 U(n-1) = 0.0 R(n) = 4.7 [6.0 - 1.3 seconds since selec-

tion]

Table 1: VSM-ACTR decision-making traces that highlight
goal initiation, strategy selection, decision evaluation, utility
update, and learning.
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Figure 4: Trend of decision types over trials, blue line is av-
erage decision types, red line is variance.

Data Collection
With the VSM-ACTR persona’s decision-making traces in
hand, the next step involves converting these traces into data
to train LLMs. As shown in Fig. 1, the data contains two
parts: Part A is a vector that learns the embedding space of
the model’s decision-making steps; Part B consists of model
decisions across trials.

To create data part a, this study employs a semantic ex-
traction and dimension reduction approach. This approach
aims to transform a vast number of cognitive reasoning
stamps into a vector format that balances information reten-
tion with computational efficiency. Traces for each task are
processed through a sentence transformer to obtain semantic
embeddings for each timestamp. A Sum of Ranked Explana-
tory Effects (SREE) analysis is then applied to determine the
number (N) of principal components that account for at least
70% of the variance. These embeddings are then reduced to
N dimensions using Principal Component Analysis (PCA)
(Abdi and Williams 2010) (Fig. 1(b)). The reduced embed-
dings for each timestamp are then concatenated into a one-
dimensional vector. To create data part b, this study logs de-
cisions, which are then numerically encoded. ‘0’ represents
a decision to reduce time in the preassembly section, and
‘1’ indicates a decision for assembly. These data are subse-
quently serving as the targets for fine-tuning (Fig. 1(f)).

Data Evaluation
Processed data is used as domain knowledge to train LLMs;
therefore, the next step is to evaluate the quality of the data.

Use Semantic Mapping to Evaluate Cognitive Decision
Making Traces Vector To answer the question of whether
the vector learns an embedding space of decision traces (data
part a), this study conducted a semantic mapping analysis
of the first two principal components of the learned embed-
dings. Figure 5 shows the reduced embeddings correspond-
ing to the semantic mapping of ACT-R’s components, in-
cluding procedural memory, imaginal memory, goal knowl-
edge, utility updating, and decision-making actions.

The MANOVA analysis was conducted to assess the over-
all effect of the independent variables, which include label
categories or ACT-R components, on the combined depen-
dent variables—components of reduced embeddings. This

analysis reveals a significant relationship with the semantic
mapping of ACT-R’s components. For instance, the Wilks’
lambda value (0.0004) suggests that the label or ACT-R
component categories explain nearly all the variance in
the dependent variables, indicative of a strong group ef-
fect. The statistical tests applied—Wilks’ lambda, Pillai’s
trace, Hotelling-Lawley trace, and Roy’s greatest root—all
demonstrate strong significance, as evidenced by p-values
less than 0.05 across all tests. It shows that the semantics of
neural symbolic representations can be learned using sen-
tence transformer, and the principal components retained
successfully capture the essential variance related to these
cognitive processes.

Figure 5: Reduced embedding map to full traces from VSM-
ACTR one trial.

Analyze Repeated Reinforcement Decisions To answer
the question of whether VSM-ACTR decisions (data part
b) demonstrate learning progression, and capture individ-
ual differences, this study first uses descriptive statistics and
linear regression to show the average progression of deci-
sion types across trials. It then use a mixed linear model to
assess and illustrate the effects of trials on decision types
across ACT-R model personas, with repeated measures of
trials, and random effects to account for individual differ-
ences. Last but not least, use ordered logistic regression to
analyze and understand the relationship between the num-
ber of trials and an ordinal dependent variable of learning
progress from novice to expert.

We ran the VSM-ACTR model 2,012 times to understood
its behavior (Ritter et al. 2011). Each time, we asked it to run
15-16 trials until the model achieved stable expert behavior.
We collected data with decision types encoded as 0, 1, and 2
for novice, intermediate, and expert strategies.

Fig. 4 shows a significant positive impact of trial expo-
sure on decision-making progression, evidenced by a co-
efficient of 0.086 (p < 0.05). furthermore, the standard
deviation starts relatively low but quickly increases, peak-
ing around the third trial. This could reflect a diverging ap-
proach to decision-making as VSM-ACTR personas exper-
iment with different strategies. the standard deviation grad-
ually decreases thereafter, stabilizing between 0.5 and 0.75,
which points to a convergence in decision-making strategies
among personas. A mixed linear model regression confirms
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the effect of trials on decision-making and further reveals
a variance of 0.007 in the random group effects, suggest-
ing that the trials themselves predominantly explain the vari-
ability in decision type, while the individual differences ex-
ists. Threshold analysis using ordered logistic regression re-
veals significant transition thresholds. The transition from
novice to intermediate has a significant threshold of 0.88
(p < 0.05), indicating a challenging progression to higher
decision-making skills. In contrast, the transition from inter-
mediate to expert shows a significantly lower threshold of
0.1 (p = 0.021), suggesting it is easier to progress from in-
termediate to expert than from novice to intermediate. These
findings validate that the repeated reinforcement decisions
from VSM-ACTR demonstrate human like learning progres-
sion and capture individual differences.

LLM-ACTR Framework, Experiments,
and Results

With the validated data from VSM-ACTR in hand, this
section begins by explaining the design principles of the
LLM-ACTR framework, followed by the experiments, re-
sults, and discussions.

Design Principles of the LLM-ACTR Framework
Figure 1 shows LLM-ACTR. With the goal of knowledge
transfer in mind, we designed the LLM-ACTR based on the
mechanism of LLMs’ next-token prediction and the knowl-
edge representation of VSM-ACTR.

During the early layers, when LLMs calculate semanti-
cally meaningful primitives. We drew inspiration from acti-
vation engineering for LLM behavior control, e.g., (Turner
et al. 2023; Zou et al. 2023), where the learned content vec-
tor is added to the residual stream of the layer to steer behav-
ior toward desired outcomes. Instead of learning the content
vector from contrast pairs of training data, e.g., (Panickssery
et al. 2023; Xu and Wang 2023), which is not applicable in
our case, we develop a cognitive decision-making concept
vector through semantic extraction and dimensionality re-
duction using the VSM-ACTR decision-making traces (see
Table 1). We then added it to the activations during the for-
ward pass to elicit meaningful behavior perpetuation (Subra-
mani, Suresh, and Peters 2022). This was then converted into
a high-level execution plan in the middle layers. During the
final stages of the model head, where concrete decision to-
kens are generated, we drew inspiration from fine-tuning for
transfer learning, e.g., (Swati et al. 2019; Kim et al. 2022),
and the recent findings that LLMs’ final layer of contextu-
alized embeddings contains rich neural representations for
predicting human behaviors (Binz and Schulz 2024; Wulff
and Mata 2023). Therefore, we access the last contextual-
ized embedding, obtain the masked embedding, and fine-
tune the LLM with the target as human-like decisions.

Base Model and Data
The case study uses LlaMa-2 7B model as the base model
because it demonstrated effectiveness and efficiency in NLP
tasks (Huang, Hu, and Wang 2024). As a state-of-the-art
LLM, LlaMa has been trained on trillions of tokens from

publicly available datasets. Unlike other transformer-based
models such as the GPT family, which can only be accessed
at the user’s end, LlaMa’s architecture, including its pre-
trained weights, is fully accessible. Furthermore, evidence
that its internal representations can be trained to become
more aligned with human neural activity has been presented
(Binz and Schulz 2024).

The VSM-ACTR full trace vector (data part A) is obtained
by processing random 240 ACT-R persona traces using se-
mantic extraction and dimension reduction. Note that each
persona has vectors of varied lengths due to the simulated
individual differences. We addressed the issue of ragged ten-
sors by padding, then calculated the standardized mean val-
ues of these vectors, and integrated the normalized vector
into the residual stream of one of the early hidden layers of
the transformer, using a scaling factor (multiplier) to control
the magnitude of the vector’s effect.

To determine the data part b size that can effectively per-
form the fine-tuning task while balancing efficacy and re-
source limitations, we referred to (Kumar, Sharma, and Bedi
2024), who showed evidence that LlaMa-2 7B would main-
tain competitive performance in resource-limited text classi-
fication with datasets of nearly 1,000 rows per class. Based
on this, we created a dataset that contains 2,012 decision-
making trials, obtained by running the developed VSM-
ACTR model across 32 problem sets, each ACT-R persona
was run for 15-16 trials until more stable expert behavior
was achieved.

Experiment Evaluation
To assess the model’s ability to make human-like decisions,
we first split the data into train and validation sets to reserve
a set of unseen problems. We then compared the predic-
tive negative log-likelihood (NLL), a measure of goodness-
of-fit, of LLM-ACTR in predicting VSM-ACTR’s decisions
on the unseen problems, against a pre-trained LlaMa and
a LlaMa fine-tuned without content vectors. Using LlaMa
without fine-tuning provides a measure of the overall impact
of LLM-ACTR on learning human-like decisions, and us-
ing a fine-tuned LlaMa offers insights into the magnitude of
the impact on task performance from the cognitive decision-
making vector compared to fine-tuning with reinforced de-
cisions.

Experiment Metrics
The VSM-ACTR full trace vector is set to be trainable when
added to the residual stream in ℓtarget. The fine-tuning pro-
cess of LLM-ACTR and the fine-tuning of LlaMa-only use
the same metrics. The fine-tuning employs cross-entropy as
the loss function and uses Adam optimization. Training in-
volves a train-test split of 0.2 and uses a batch size of 5 for
both training and validation phases. The learning rate is set
to 1×10−5, with training spanning across 10 epochs. To en-
sure regularization and prevent overfitting, a weight decay of
0.01 and a dropout rate of 0.5 are applied, and gradient ac-
cumulation is set to 2. Lastly, gradient clipping is employed
to maintain a maximum gradient norm of 1.0 for gradient
explosion control.
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Experiment Results
The training loss of LLM-ACTR begins at 0.85, with fluc-
tuations observed in subsequent epochs and a notable dip
at epoch 7 and ended with 0.847 at epoch 10. The val-
idation loss starts at around 0.68 and remains generally
reduced throughout the epochs with end up 0.65 at 10
epochs, showing LLM-ACTR learns effectively. In addition,
the LLM-ACTR has an average NLL of 0.65 on held-out
data across 10 epochs, compared to the pretrained LlaMa,
which has an NLL of 0.904 on held-out data. This shows
that LlaMa learns from VSM-ACTR and obtains better pre-
dictions of human-like decisions.

We then compared LLM-ACTR with fine-tuned-only
LlaMa to assess the impact of injecting VSM-ACTR content
vecotr into LlaMa’s hidden layer on knowledge transfer. The
results show that LLM-ACTR had an improved NLL com-
pared to LlaMa with fine-tuning only, as illustrated in Fig.
6. Adding the vector representation of VSM-ACTR’s full
traces during fine-tuning slightly decreased the mean and
reduced the variance of NLL across 10 epochs, indicating
better model fit and stability compared to fine-tuning alone.
The improved model fitting of LLM-ACTR suggests that the
learned vector from VSM-ACTR’s full traces provides addi-
tional useful knowledge to LlaMa, enabling it to better cap-
ture underlying patterns in human-like decisions.

Figure 6: The NLL comparison across 10 epochs of LLM-
ACTR against fine-tuning only LLaMa.

Results and Discussion
The results show that after knowledge transfer from a cog-
nitive model to an LLM, through behavior perturbation and
fine-tuning, the LLM offers better representations of human
behaviors compared to an LLM-only model that employs
chain-of-thought reasoning on the DFM task. Furthermore,
allowing the model to integrate and learn from the cognitive
vector during training potentially leads to more nuanced and
human-like decision-making capabilities, as captured by the
cognitive features encoded in the vector. However, the influ-
ence of the cognitive content vector is limited and warrants
further investigation, partly because the stochastic simula-
tion of the VSM-ACTR produces decision-making vectors
of various lengths. This study addresses ragged tensors by
padding, but this approach potentially dilutes or changes the

semantics of each vector. To improve the impact of the cog-
nitive vector, additional techniques such as vector optimiza-
tion will be needed.

Regardless, this development opens up new research di-
rections for equipping LLMs with the necessary knowledge
to computationally model and replicate the internal mecha-
nisms of human cognitive decision-making (Oltramari et al.
2021). It also complements ongoing work showing that
LLMs could possibly be transformed into cognitive mod-
els through knowledge transfer, e.g., (Binz and Schulz 2024;
Coda-Forno et al. 2024a,b). For example, (Binz et al. 2024)
demonstrates that through fine-tuning, LLMs’ internal rep-
resentations become more aligned with human neural activ-
ity.

Conclusion

Contribution. The present study offers three contributions:
(1) It introduces VSM-ACTR, a human-like cognitive model
for manufacturing solutions, which has been improved to
model metacognitive processes to reflect on and evaluate the
effectiveness of the actions. (2) It advances previous efforts
on human-like LLMs alignment using data from large-scale
cognitive psychology experiments involving human subjects
(Binz and Schulz 2023; Coda-Forno et al. 2024a). It reduces
the cost of data collection by using synthetic data from cog-
nitive models. The synthetic data present real-time cogni-
tive reasoning with tasks, including metacognition, which is
hard to quantify in human subjects (Fleming and Lau 2014).
(3) It presents a developing framework of knowledge trans-
fer from cognitive models to language models, rooted in the
mechanism of LLMs’ next-token prediction and the knowl-
edge representation of cognitive models: one integrates a
cognitive decision-making vector into the early layer of the
residual stream to elicit meaningful behavior perpetuation
(Panickssery et al. 2023), and the other occurs in the later
phase of model heads, using the cognitive models’ decisions
for fine-tuning (Guo et al. 2019). The case study demon-
strates that LLM-ACTR achieves better fit to human-like
decisions on unseen problems compared to a pre-trained
model in the DFM task. Thus, it is possible to transfer deci-
sion making knowledge from cognitive models to LLMs by
adding a cognitive concept vector to the forward pass acti-
vation and fine-tuning.

Limitation and Future Work. LLM-ACTR can now gen-
eralize to unseen problems within an applicable domain,
constrained by fixed decision candidates and unknown de-
cision metric values. In applying LLM-ACTR to problems
that incorporate an increasing number of decision candi-
dates and associated metrics, it becomes critical to solve
out-of-domain problems (Wang et al. 2022). This will re-
quire LLM-ACTR to progress to transferring guided percep-
tion, memory, and goal-setting to LLMs. As (Zhu and Sim-
mons 2024) found, training the LLM with the rules of guided
perception in cognitive models can help generalize robotics
problem-solving to out-of-distribution tasks.
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