
PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Intelligent IoT Attack Detection Design via ODLLM with Feature Ranking-based
Knowledge Base

Satvik Verma1, Qun Wang1, E. Wes Bethel1,2

1Department of Computer Science, San Francisco State University, San Francisco, CA, 94132
2Lawrence Berkeley National Laboratory, Berkeley CA, 94720

sverma4@sfsu.edu, claudqunwang@ieee.org, ewbethel@sfsu.edu

Abstract

The widespread adoption of Internet of Things (IoT) devices
has introduced significant cybersecurity challenges, particu-
larly with the increasing frequency and sophistication of Dis-
tributed Denial of Service (DDoS) attacks. Traditional ma-
chine learning (ML) techniques often fall short in detecting
such attacks due to the complexity of blended and evolv-
ing patterns. To address this, we propose a novel framework
leveraging On-Device Large Language Models (ODLLMs)
augmented with fine-tuning and knowledge base (KB) inte-
gration for intelligent IoT network attack detection. By im-
plementing feature ranking techniques and constructing both
long and short KBs tailored to model capacities, the pro-
posed framework ensures efficient and accurate detection of
DDoS attacks while overcoming computational and privacy
limitations. Simulation results demonstrate that the optimized
framework achieves superior accuracy across diverse attack
types, especially when using compact models in edge com-
puting environments. This work provides a scalable and se-
cure solution for real-time IoT security, advancing the appli-
cability of edge intelligence in cybersecurity.

Introduction
The proliferation of IoT sensors in both residential and
industrial environments has led to the generation of vast
amounts of data that require timely and effective process-
ing to facilitate rapid decision-making (Zhang et al. 2023).
However, IoT sensors are particularly vulnerable to various
cyber-attacks, especially DoS and Distributed DDoS attacks.
These attacks can cause significant losses and further harm,
making the quick and accurate identification of such threats
critically important (Jaton, Gyawali, and Qian 2023).

ML algorithms have been extensively used to detect ab-
normal DDoS traffic. The authors in (Hussain et al. 2020)
proposed a methodology to convert the network traffic data
into image form and trained a CNN model for DDoS de-
tection. (Jia et al. 2020) presented a DDoS attack detection
algorithm based on traffic variations and LSTM and CNN
models. The authors in (Aysa, Ibrahim, and Mohammed
2020) utilized LSVM, Neural Network, and Decision tree
to detect abnormal activities such as DDOS features. Tradi-
tional ML algorithms rely on large datasets for training and
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face numerous limitations in this context. Moreover, when
multiple attack types are mixed together, these algorithms
often struggle to perform effectively.

The emergence of large models has shown promise in
the real-time and accurate identification of various abnor-
mal network traffic patterns (Zhu et al. 2024). Nonetheless,
these models typically require substantial computational re-
sources for training and deployment, consuming significant
amounts of computing power and electricity. Moreover, uti-
lizing third-party models introduces data privacy and secu-
rity concerns, which are particularly pertinent in network
attack defense scenarios (Yao et al. 2024). In distributed,
large-scale IoT networks, such models often fail to meet user
needs promptly due to their resource-intensive nature and
potential latency issues. This has led to increased interest
in edge computing paradigms, where edge intelligence and
on-device large models have garnered significant attention
from researchers (Xu et al. 2024a) (Chen, Li, and Ma 2024).
By employing techniques like model pruning and compres-
sion, smaller models can deliver functionalities compara-
ble to their larger counterparts in most situations (Xu et al.
2024a) (Chen et al. 2024). Building upon this, developing
applications on ODLLMs can ensure affordable intelligent
decision-making and local data processing (Xu et al. 2024b).
However, when applying ODLLMs to network attack de-
tection, a lack of necessary background knowledge within
the models necessitates fine-tuning and the integration of
knowledge base (KB) to enhance their performance.

Therefore, we propose a novel system that leverages
ODLLMs augmented with KB assistance to improve the de-
tection accuracy of DDoS attacks in IoT environments. Our
system addresses the challenges of computational resource
constraints and privacy concerns by enabling on-device pro-
cessing. We demonstrate that with appropriate KB support,
ODLLMs can achieve performance comparable to larger
models while operating within the limitations of edge de-
vices. The contributions of this paper are as follows:

A novel DDoS attack detection system that utilizes
ODLLMs for IoT environments is proposed. We first intro-
duce a novel approach for feature prioritization using a Ran-
dom Forest Regressor (RFR) to rank the most critical fea-
tures for different DDoS attack types, enabling the construc-
tion of efficient and scalable KBs. We then address the lim-
itations of smaller ODLLMs by designing a simplified KB
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Figure 1: System model.

that retains only high-impact features, significantly improv-
ing predictive performance while reducing computational
overhead. Third, we demonstrate the effectiveness of our
framework through extensive experiments on the CICIoT
2023 dataset, achieving high accuracy in detecting various
DDoS attack types. Our results highlight the critical role of
tailored KB designs in enabling efficient and accurate attack
detection on resource-constrained edge devices, paving the
way for scalable and secure IoT network solutions.

The subsequent sections are organized in the following
manner. The system model and problem formulation are pre-
sented in Section II. The proposed feature ranking-based KB
design is developed in Section III. The findings of the sim-
ulation are presented in Section IV. Finally, Section V pro-
vides the concluding remarks for this paper.

System Model and Problem Formulation
System Model
As shown in Fig. 1, the framework operates in three primary
stages:

(1) Feature Analysis and Ranking: The system begins by
extracting key features from the historical records of DDoS
traffic data. These features include important values such as
protocol types, packet rates, inter-arrival times, TCP flags,
and statistical metrics like average packet size and variance.
By analyzing these features, the system ranks them based on
their significance in indicating abnormal network behavior.
This prioritization allows the model to focus on the most
impactful indicators of potential attacks.

(2) Knowledge Base Construction: The KB serves as the
intermediary layer between feature analysis and anomaly
detection. It provides a structured repository of critical in-
sights derived from the ranked features. The KB is con-
structed in two formats to optimize compatibility with dif-
ferent ODLLM model capacities. Long KBs are used for
detailed analysis with medium-size ODLLM, and short KBs
are used for lightweight ODLLM applications. The KB en-
capsulates the most distinguishing features of each attack
type. These features are encoded as concise descriptors that
facilitate quick comparison with incoming traffic data.

(3) Integration with LLM for Anomaly Detection: After
identifying the important features and constructing KB, the
system integrates them with an ODLLM to perform anomaly
detection. The LLM leverages its advanced reasoning ca-
pabilities and contextual understanding to interpret the fea-

ture set comprehensively. By incorporating domain-specific
knowledge, the LLM can accurately predict the type of net-
work attack occurring.

By deploying the model on edge devices, we aim to max-
imize the accuracy of abnormal traffic detection.

Types of DDoS Attack
We consider four types of DDoS attacks and their character-
istics:

ICMP Flood Attack overwhelms the target with a high
volume of ICMP echo requests, causing the network to
become congested and unresponsive. This attack usually
causes increased bandwidth consumption, degraded service
performance, and potential downtime.

UDP Flood Attack sends a large number of UDP packets
to random ports on the target server, forcing it to process un-
necessary requests. It usually has random destination ports
and stateless protocol exploitation. UDP flood will increase
CPU usage, and denial of legitimate service requests.

TCP SYN Flood Attack exploits the TCP handshake
mechanism by sending numerous SYN packets without
completing the handshake, consuming server resources. It
usually has elevated SYN flags, half-open TCP connections,
and spoofed IP addresses. It will exhaust connection tables,
leading to an inability to establish new legitimate connec-
tions.

TCP PSH+ACK Flood Attack sends a large number of
TCP packets with the PSH (Push) and ACK (Acknowledg-
ment) flags set to overwhelm the target’s processing capa-
bilities. It usually involves high volumes of PSH and ACK
packets that mimic normal traffic patterns, making them
difficult to filter. This flood increases processing overhead,
leads to resource depletion, and can cause potential service
crashes.

Problem Formulation
Our objective is to design a DDoS attack detection model
that maximizes the accuracy of identifying various attacks
in IoT environments while operating efficiently on edge
devices with limited computational resources. Let D =
{(xi, yi)}Ni=1 be the traffic dataset, where xi ∈ Rd repre-
sents the feature vector extracted from network traffic data
for the i-th sample. yi ∈ Y = {1, 2, . . . , C} is the cor-
responding label indicating the attack type, with C being
the number of attack classes (including normal traffic). Let
fθ : Rd → Y be the detection ODLLM model enhanced by
KB θ, which maps input features to predicted labels.

The primary goal is to find the optimal KB θ∗ that max-
imizes the overall accuracy on the dataset D. The accuracy
A(θ) can be defined as:

A(θ) =
1

N

N∑
i=1

δ (fθ(xi), yi) , (1)

where δ(a, b) is the Kronecker delta function:

δ(a, b) =

{
1, if a = b,

0, if a ̸= b.
(2)
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The problem can be formulated as an optimization problem:

θ∗ = argmax
θ

A(θ). (3)

Considering the edge computing resource limitations and
ODLLM model constraints, we need to design KB to maxi-
mize the detection accuracy.

Feature Ranking and Knowledge Base Design
To build a reliable model capable of differentiating between
various types of attacks, we implemented a structured fea-
ture ranking and KB development methodology. This pro-
cess involved selecting high-impact features, constructing an
adaptable KB, iterating for accuracy improvements, and tai-
loring our approach based on model capacity.

Feature Ranking with Random Forest Regressor
Our initial step in constructing the KB involved ranking fea-
tures by their importance for each attack type. We employed
a Random Forest Regressor (RFR) to evaluate feature sig-
nificance. The RFR assigns importance based on how well
each feature helps split the data to classify attacks correctly.
The more a feature contributes to reducing classification
mean squared error (MSE) across multiple decision trees,
the higher its importance (Firdaus, Munadi, and Purwanto
2020). The importance for feature αi is computed as:

I(αi) =
1

T

T∑
t=1

∆MSEt(αi), (4)

where T is the total number of decision trees in the forest,
and ∆MSEt(αi) represents the reduction in MSE for tree t
when splitting on feature αi. The RFR model analyzed a la-
beled dataset consisting of various attack types, producing
an ordered list of features ranked by their importance score
I(αi). From this ranking, we selected the top k = 10 fea-
tures for each attack type, focusing on characteristics with
the highest predictive value for distinguishing between at-
tack patterns. For each selected feature, we extracted de-
scriptive statistics, including the lower bound min(α), upper
bound max(α), and the median value med(α). These statis-
tics defined a feature range:

Range(αi) = [min(αi),max(αi)], (5)

which encapsulates typical and boundary behavior for fea-
ture αi. The descriptive statistics for each αi are given as:

Statistics(αi) = {min(αi),med(αi),max(αi)}. (6)

This range and statistical profile provided a numerical signa-
ture for each attack type, effectively differentiating between
behaviors such as protocol type, packet size, and inter-arrival
time (IAT). These bounded values formed the foundation for
a structured and precise KB, enabling the model to learn the
unique signatures of each attack type and improve prediction
accuracy.

We consider the dataset CICIOT 2023, which is a com-
prehensive benchmark dataset designed for evaluating in-
trusion detection systems in IoT environments, featuring di-
verse network traffic types, including normal and malicious
behaviors, across multiple IoT protocols and attack scenar-
ios (Neto et al. 2023).

Figure 2: Ranked features for DDoS ICMP Flood attack us-
ing Random Forest Regressor on the CIC IoT 2023 Dataset.

DDoS ICMP Flood The feature ranking for DDoS-
ICMP Flood attack is shown in Fig 2. The top two features
identified for DDoS-ICMP Flood attacks in our dataset are
the MIN value and Protocol Type. The MIN value represents
the minimum size of network traffic packets and exhibits
distinct patterns during ICMP flood attacks. This is because
ICMP flood attacks often involve numerous small packets,
with the MIN value ranging from 42.0 to 992.72 and a me-
dian of 42.0. In over 99% of cases, the MIN value is exactly
42.0, which is consistency as a signature feature for ICMP
floods. The Protocol Type is another high-importance fea-
ture, as ICMP floods specifically utilize the Internet Control
Message Protocol (ICMP). The Protocol Type ranges from
0.77 to 15.35, with a median of 1.0, which aligns with the
expected value for ICMP packets according to standard pro-
tocol definitions.

Additionally, features like Magnitude and ICMP were ob-
served to have moderate importance. The Magnitude feature,
which quantifies the volume or intensity of network traffic,
is particularly indicative of DDoS attacks as ICMP floods
typically generate high bursts of traffic. In our dataset, the
Magnitude ranges from 9.16 to 59.79, with a median of 9.16,
demonstrating that most ICMP flood attacks are character-
ized by relatively high traffic intensity. Similarly, the ICMP
feature, reflecting the presence of ICMP packets in the traf-
fic, serves as a direct identifier for this attack type. Its values
range from 0.0 to 1.0, with a median of 1.0, indicating that
ICMP packets are consistently present in traffic associated
with ICMP flood attacks. Protocol-specific features, such as
HTTP, DNS, SSH, and flag numbers, were found to have lit-
tle to no relevance for identifying ICMP flood attacks. These
features consistently showed zero or near-zero importance
scores, as they are unrelated to the characteristics of ICMP
floods.

This feature ranking allows the model to utilize KB to
focus on the most relevant characteristics for accurate de-
tection of DDoS-ICMP Flood attacks. The KB can be given
as:
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Figure 3: Ranked features for DDoS UDP Flood attack using
Random Forest Regressor on the CIC IoT 2023 Dataset.

1 If the attack is DDoS ICMP flood, it
should exhibit the following
characteristics:

2 - Protocol Type: Has to be 1.0 for ICMP.
3 - ICMP Indicator: Has to be 1.0 for ICMP

.
4 - Min Packet Size: Ranges from 42.0 to

992.72, commonly at 42.0.
5 - Magnitude: Intensity ranges from 9.17

to 59.80, with a typical value near
9.17.

6 - Average Packet Size (AVG): Spans from
42.0 to 1885.5, often around 42.0.

7 - Total Sum of Packets (Tot sum):
Between 42.0 and 19764.8, commonly
near 441.0.

8 - Max Packet Size: Has to be around
42.0.

9 - Total Size of Packets (Tot size): Has
to be 42.0.

10 - Inter-Arrival Time (IAT): Very high,
between 0.0 and 100179851.34, with a
median around 83128994.35.

DDoS UDP Flood The feature ranking of DDoS-
UDP Flood attacks is shown in Fig. 3. The two most crit-
ical features are IAT and Rate. This is because of the nature
of UDP floods, which are characterized by bursts of packets
with minimal inter-arrival time and a high packet rate. The
IAT ranges from 4.3×10−6 to 99, 748, 506.4, with a median
value of 83, 102, 993.46, reflecting the rapid packet gener-
ation typical of these attacks. Similarly, the Rate feature,
which captures the volume of UDP packets sent over the
network, spans from 6.0 to 1, 569, 352.1, with a median of
7, 480.80. These values highlight the high-frequency, high-
volume characteristics of UDP flood attacks.

Features with moderate importance include Source Rate
(Srate), Header Length, UDP, and Protocol Type: Srate re-
flects the source-side packet transmission rate, ranging from
6.0 to 1, 569, 352.1, aligning with the traffic burst patterns
typical of UDP floods. Header Length, varying between

751.5 and 1, 076, 354.07, represents packet sizes associated
with UDP flood traffic. The UDP feature confirms the pro-
tocol type, typically close to 1.0, indicating the attack’s re-
liance on the UDP protocol. Protocol Type, ranging from
4.84 to 17.0 with a median of 17.0, differentiates UDP floods
from other attacks, as the value corresponds to the UDP pro-
tocol in networking standards.

Features with lower importance include Magnitude, Min,
Tot Size, and Tot Sum. Magnitude represents the intensity of
the traffic flow, reflecting moderate importance in identify-
ing the attack’s burst characteristics. It ranges from 9.97 to
41.16, with a median value of 10.0. Min, Tot Size, and Tot
Sum play supporting roles in detecting anomalies associated
with UDP floods by capturing packet-level traffic metrics,
Features such as ICMP, TCP, and flag numbers have mini-
mal or zero importance for DDoS-UDP Flood detection.

This analysis emphasizes the role of high-importance fea-
tures like IAT and Rate in distinguishing DDoS-UDP Flood
traffic. By leveraging these prioritized features, the KB can
be given as:
1 If the attack is DDoS UDP flood, it

should exhibit the following
characteristics:

2 - Protocol Type: Close to 17.0,
corresponding to the UDP protocol.

3 - UDP Indicator: Must be 1.0, confirming
the presence of UDP packets."

4 - Inter-Arrival Time (IAT): Extremely
varied, ranging from 4.39e-06 to
99748506.47, with a typical value
around 83102993.47, reflecting high-
frequency bursts.

5 - Rate and Source Rate (Srate): Both
range from 6.01 to 1569352.19, with a
common value near 7480.80,

indicating high packet transmission
volumes.

6 - Magnitude: Represents traffic
intensity, ranging from 9.97 to
41.16, typically about 10.0.

7 - Minimum Packet Size (Min): Between
48.74 and 468.37, commonly close to
50.0, reflecting packet-level
characteristics.

8 - Total Packet Size (Tot size): Spans
from 49.88 to 1075.46, with a
frequent value near 50.0.

9 - Total Sum of Packets (Tot sum): Ranges
from 150.0 to 11576.45, with a

typical value around 525.0, capturing
the cumulative packet behavior.

DDoS TCP Flood The ranked features for DDoS-
TCP Flood detection are illustrated in Fig. 4. The two most
critical features are IAT and SYN Count, which are essen-
tial for identifying the unique traffic patterns associated with
TCP flood attacks. TCP floods often involve high-frequency
traffic and repeated SYN packets aimed at exhausting server
resources. The IAT value, which ranges from 1.3 × 10−7

to 99, 691, 821.6, with a median of 83, 068, 279.06, high-
lights the rapid and irregular timing patterns typical of high-
volume TCP traffic during an attack. Similarly, the SYN



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Figure 4: Ranked features for DDoS TCP Flood attack using
Random Forest Regressor on the CIC IoT 2023 Dataset.

Count, which captures the frequency of SYN packets, ranges
from 0.0 to 2.25, with a median of 0.00. This low median
value reflects repeated connection attempts characteristic of
TCP flood behavior, where malicious actors send SYN pack-
ets to initiate multiple, incomplete TCP connections.

Features with moderate importance include Header
Length, SYN Flag Number, Flow Duration, and FIN Count.
Header Length, ranging from 50.96 to 1, 264, 522.69, repre-
sents the variability in packet sizes during a TCP flood. SYN
Flag Number, with values typically close to 0.0, indicates
a low presence of SYN flags in some TCP flood patterns.
Flow Duration, spanning 0.0 to 1, 270.91 seconds, provides
insights into the connection longevity and stability during
the attack. FIN Count, ranging from 0.0 to 0.45, captures
the frequency of FIN packets, shedding light on TCP ses-
sion termination behaviors during an attack.

Based on the above feature ranking analysis, the KB can
be constructed as:
1 If the attack is DDoS TCP flood, it

should exhibit the following
characteristics:

2 - Protocol Type: Close to 6.0,
corresponding to the TCP protocol
.

3 - PSH Flag Number: Should be 0.0,
reflecting minimal push flags in
typical TCP flood behavior.

4 - TCP Indicator: Often 1.0,
confirming the use of the TCP
protocol.

5 - URG Count: Typically 0.0,
indicating no urgency flags in
normal TCP traffic.

6 - SYN Flag Number: Typically 0.0,
showing the absence or minimal
use of SYN flags in regular
traffic.

7 - Flow Duration: Ranges from 0.0 to
1270.90 seconds, often 0.0 in
shorter-lived connections

Figure 5: Ranked features for DDoS PSHACK Flood at-
tack using Random Forest Regressor on the CIC IoT 2023
Dataset.

characteristic of flood traffic.
8 - FIN Count: Typically 0.0, but can

reach up to 0.45 in some TCP
exchanges.

9 - ACK Flag Number: Mostly 0.0,
indicating limited acknowledgment
flags in standard TCP flood

traffic.

DDoS PSHACK Flood The ranked features for DDoS-
PSHACK Flood detection are illustrated in Fig. 5. The
two most critical features are PSH Flag Number and ACK
Flag Number, which are integral to the attack’s mechanism.
PSHACK floods heavily rely on the consistent presence of
PSH and ACK flags to overwhelm the target system. The
PSH Flag Number, ranging from 0.0 to 1.0 with a median
of 1.0, reflects the frequent use of PSH flags in attack pack-
ets. This consistency highlights the attack’s strategy of forc-
ing the target system to process data packets immediately.
Similarly, the ACK Flag Number, also ranging from 0.0 to
1.0 with a median of 1.0, underscores the importance of
acknowledgment packets in the attack, which maintain the
flood of connections and disrupt normal operations.

Other features with moderate importance include URG
Count, RST Count, Inter-Arrival Time (IAT), and Total
Packet Size (Tot Size): URG Count, with values between 0.0
and 214.22 and a median of 1.0, reflects the occasional pres-
ence of urgency flags in PSHACK packets, adding to the at-
tack’s complexity. RST Count, ranging from 0.0 to 472.02
with a median of 1.0, indicates the frequent use of reset
flags, a common tactic in PSHACK floods to disrupt TCP
sessions. IAT, spanning 1.5 × 10−5 to 99, 998, 229.54 with
a median of 83, 318, 215.97, reflects the timing patterns of
high-frequency bursts typical of this attack. Tot Size, ranging
from 53.76 to 689.69 with a median of 54.0, provides addi-
tional indicators of packet size consistency in the attack.

Features with lower importance include Magnitude,
Header Length, Average Packet Size (AVG), and Maxi-
mum Packet Size (Max): Magnitude, ranging from 10.34
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to 31.17 with a median of 10.39, indicates the intensity of
the traffic flow. Header Length, varying between 51.3 and
1, 601, 755.99 with a median of 54.0, captures packet-level
details. AVG and Max values, both with medians of 54.0,
emphasize the uniformity of packet sizes during the attack.

This analysis highlights the role of high-importance fea-
tures such as PSH and ACK flags, which directly cor-
relate with the attack’s strategy, supported by moderate-
importance features like RST Count and Tot Size that add
context to the classification. By focusing on these key fea-
tures, the detection system can effectively identify and mit-
igate DDoS-PSHACK Flood attacks. Thus, the KB is con-
structed as:
1 ’DDoS-PSHACK_Flood’: (
2 If the attack is DDoS PSHACK flood,

it should exhibit the following
characteristics:

3 - PSH Flag Number: Must be 1.0,
indicating the presence of single
push flags in the traffic.

4 - ACK Flag Number: Often 1.0, but
can occasionally be 0.0,
distinguishing it from other TCP
floods.

5 - URG Count: Typically 1.0 but can
reach up to 367.51, reflecting
the occasional use of urgency
flags.

6 - RST Count: Usually 1.0,
highlighting the frequent use of
reset flags in the attack.

7 - Inter-Arrival Time (IAT): Ranges
from 1.50e-05 to 99998229.53,
with a common value around
83318215.96, indicating high-
frequency bursts.

8 - Total Packet Size (Tot size):
Between 53.76 and 1177.9,
typically around 54.0, showing
consistent packet sizes.

9 - Magnitude: Varies in intensity
from 10.33 to 40.65, with a
common value near 10.39.

10 - Average Packet Size (AVG): Ranges
from 53.34 to 1079.47, often
close to 54.0, showing consistent
averages.

11 - Maximum Packet Size (Max): Spans
from 53.76 to 3022.11, with
typical values around 54.0.

12 )

Introducing Key Features for Targeted Predictions
To enhance accuracy further, we introduced a ”key feature
set” alongside the KB. This set consisted of the most dis-
criminative features for each attack type which we got while
ranking the features and then comparing the different at-
tacks, serving as a concise reference for the model during
predictions. By focusing on these critical features, the model
could prioritize the most relevant characteristics before con-
sulting the broader KB. This two-tiered structure provided
both a high-level guide for classification and detailed de-

scriptions for refining distinctions between attack types.

Challenges with Smaller Models and KB
Simplification
Smaller models, such as LLaMA 3.2 3B and Phi3 Mini 3.8B,
presented significant challenges in utilizing the comprehen-
sive KB. These models struggled to process the volume and
complexity of multi-feature input due to their limited param-
eter capacity, leading to poorer predictive performance com-
pared to scenarios where no KB was used (Xu et al. 2024b)
(Shen et al. 2024).

To address these limitations, we hypothesized that smaller
models were overwhelmed by the extensive KB, which in-
cluded redundant and low-impact features. As a solution, we
designed a simplified KB tailored specifically for smaller
models. This version focused exclusively on the highest-
impact features for each attack type, retaining only the most
distinctive characteristics and omitting secondary details.
This streamlined approach allowed smaller models to pro-
cess the KB more effectively and significantly improved pre-
dictive accuracy. For example, a simplified KB for an ICMP
Flood attack can be given as:
1 DDoS-ICMP_Flood: Protocol: ICMP; High

packet rate; Low Inter-Arrival Time (
IAT).

2 DDoS-UDP_Flood: Protocol: UDP; High
packet rate; Low IAT.

3 DDoS-TCP_Flood: Protocol: TCP; High
packet rate; Elevated SYN flag.

4 DDoS-PSHACK_Flood: Elevated PSH and ACK
flags.

5 DDoS-SYN_Flood Elevated SYN flag.
6 DDoS-RSTFIN_Flood: Elevated RST and FIN

flags.
7 DDoS-SynonymousIP_Flood: Multiple source

IPs; High SYN counts.

The simplified KB was embedded into natural language
prompts to help models identify attack types more effi-
ciently. For instance:
1 Network Traffic Data:
2 - Protocol Type: TCP
3 - Packet Rate: 450 packets/sec (High)
4 - Inter-Arrival Time (IAT): Low
5 - TCP Flags:
6 - SYN: Elevated
7 - PSH: Normal
8 - ACK: Normal
9 - RST: Normal

10 - FIN: Normal
11
12 Based on the knowledge base, determine

the most likely attack type. from the
following list:( DDoS-ICMP_Flood,

DDoS-UDP_Flood, DDoS-TCP_Flood, DDoS-
PSHACK_Flood, DDoS-SYN_Flood, DDoS-
RSTFIN_Flood, DDoS-SynonymousIP_Flood
, Unknow, Normal.

This approach successfully bridged the gap in performance
for smaller models, enabling them to leverage a streamlined
KB and maintain classification accuracy with minimal com-
putational overhead.
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Attack Type Llama 3.1 8B Phi3 Medium 14B Gemma2 9B
No KB Long KB Short KB No KB Long KB Short KB No KB Long KB Short KB

ICMP 97.80% 100.00% 83.80% 50.40% 42.40% 27.40% 20.40% 100.00% 20.00%
UDP 56.40% 86.60% 76.60% 39.20% 31.40% 59.80% 1.80% 100.00% 48.80%
TCP 77.40% 3.60% 77.80% 10.60% 16.80% 6.00% 0.00% 0.00% 0.00%
PSHACK 3.20% 59.40% 54.80% 10.20% 17.80% 28.60% 3.20% 35.20% 15.00%

Table 1: Accuracy of Different Models on Various DDoS Attack Types with and without KBs.

Simulation and Performance Evaluation
We use Ollama to retrieve ODLLMs with our con-
structed KB on Destkop with Nividia RTX 4090 and
Intel I9-13900KF (Liu, Kang, and Han 2024). We test
our model’s performance with the CICIoT 2023 dataset
(Neto et al. 2023). Our source code is released on
GitHub (https://github.com/claudwq/Intelligent-IoT-Attack-
Detection-Design-via-LLM-with-Feature-Ranking-Based-
Knowledge-Base-Design.git). Specifically, we consider the
latest small-size models as follows:

Llama 3.1 8B is the compact variant in the Llama 3.1 se-
ries developed by Meta AI with 8 billion parameters (Dubey
et al. 2024). Phi3 Medium 14B is part of the Phi-3 se-
ries developed by Microsoft with 14 billion parameters, it
offers substantial reasoning capabilities while maintaining
a manageable computational footprint (Abdin et al. 2024).
Gemma2 9B is a high-performing and efficient language
model within the Gemma 2 series developed by Google
DeepMind, which includes models with 2B, 9B, and 27B
parameters (Team et al. 2024). Llama 3.2 3B is a compact
variant in the Llama 3 series with 3 billion parameters, opti-
mized for multilingual tasks and large-scale text processing
(Dubey et al. 2024). Phi3 Mini 3.8B is also part of the Phi-3
series with 3.8 billion parameters, designed as a lightweight
model optimized for chat-based interactions and reasoning
tasks (Abdin et al. 2024).

Performance of Medium-size Detectors
We first evaluate the performance of medium-size models
with our KB. As shown in table 1, the simulation results
evaluate the performance of three ODLLM on detecting four
distinct DDoS attack types under three configurations: with-
out a KB (KB), with a long KB, and with a short KB. Ac-
curacy metrics are reported to assess the models’ ability to
classify network traffic into these categories.

The long KB is most effective for DDoS-ICMP Flood
and DDoS-UDP Flood detection across all models, particu-
larly for Gemma2 9B, where accuracy increased to 100.00%
for both attacks. However, its performance was inconsis-
tent for other attack types, such as DDoS-TCP Flood, where
accuracy degraded for Llama 3.1 8B (3.60%). The short
KB demonstrated a better balance between performance and
simplicity, particularly for Phi3 Medium 14B, where accu-
racy improved for DDoS-UDP Flood (59.80%) and DDoS-
PSHACK Flood (28.60%). However, it generally underper-
formed for Gemma2 9B.

Llama 3.1 8B exhibited the highest accuracy overall, ben-
efiting significantly from both KBs. Its ability to leverage

the long KB for DDoS-ICMP Flood and the short KB for
DDoS-TCP Flood highlights its versatility. Phi3 Medium
14B showed moderate performance, with notable improve-
ment for DDoS-UDP Flood and DDoS-PSHACK Flood
when the short KB was used. This suggests that phi3
Medium 14B is more suited for concise knowledge repre-
sentation. Gemma2 9B is heavily reliant on the long KB,
achieving perfect accuracy for some attacks but failing en-
tirely for others, such as DDoS-TCP Flood.

Performance of Small-size Detectors
To evaluate the effectiveness of the KB configurations on
small-size ODLLM, we conducted experiments using two
smaller language models: Llama 3.2 3B and Phi3 Mini
3.8B. Table 2 presents the accuracy results for the models
across the KB configurations. For Llama 3.2 3B, the model
achieved low accuracy without a KB, particularly for DDoS-
PSHACK Flood, where the accuracy was only 1.60%. The
inclusion of the long KB improved accuracy for DDoS-
ICMP Flood, achieving 42.00%, but led to decreased accu-
racy for DDoS-UDP Flood, which dropped to 23.40%. This
suggests that the long KB may have introduced unneces-
sary complexity, overwhelming the model’s capacity. When
using the short KB, however, accuracy improved signifi-
cantly across all attack types. DDoS-UDP Flood and DDoS-
TCP Flood achieved the highest accuracy at 53.80% and
53.40%, respectively, demonstrating that short KB retained
critical information while reducing complexity.

For Phi3 Mini 3.8B, the model exhibited very low accu-
racy without a KB, with DDoS-PSHACK Flood achieving
only 0.19% accuracy and DDoS-UDP Flood reaching just
0.97%. Adding the long KB resulted in marginal improve-
ments, with DDoS-ICMP Flood reaching 9.60% accuracy
and DDoS-UDP Flood improving to 4.20%. However, these
results were still significantly lower compared to the short
KB configuration. With the short KB, the model’s accuracy
increased substantially for DDoS-UDP Flood and DDoS-
TCP Flood, both reaching 22.20%. This demonstrates short
KB was far more effective for smaller models.

Both models achieved their highest accuracy for DDoS-
ICMP Flood across all KB configurations, indicating that
the features for this attack type were straightforward
and well-represented in the KB. For DDoS-UDP Flood,
the short KB significantly improved accuracy, particularly
for Llama 3.2 3B, which achieved 53.80%. This high-
lights the impact of focusing on essential UDP flood
features. Similarly, DDoS-TCP Flood detection benefitted
greatly from the short KB, with Llama 3.2 3B achieving
53.40% accuracy. Both models struggled to detect DDoS-
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Attack Type Llama 3.2 3B Phi3 mini 3.8B
No KB With Long KB With Short KB No KB With Long KB With Short KB

ICMP 28.20% 42.00% 52.40% 6.65% 9.60% 13.20%
UDP 38.80% 23.40% 53.80% 0.97% 4.20% 22.20%
TCP 22.60% 27.80% 53.40% 0.97% 4.20% 22.20%
PSHACK 1.60% 3.40% 38.80% 0.19% 0.00% 3.00%

Table 2: Accuracy Comparison for DDoS Attack Detection with Different Models and KB Configurations.

PSHACK Flood, even with the short KB, with Phi3 Mini
3.8B achieving only 3.00%. This suggests that the feature
set for this attack type may require further refinement to en-
hance detectability.

Conclusions
In this paper, we presented an intelligent IoT network attack
detection framework leveraging ODLLM integrated with
feature ranking-based KB designs. The proposed system ad-
dresses the challenges of computational resource constraints
and data privacy in edge environments while providing a
scalable and efficient solution for DDoS attack detection.
Our experiments demonstrated that ODLLMs equipped with
a simplified KB tailored to model capacity could achieve
competitive performance even on resource-constrained de-
vices. By ranking features using RFR and constructing long
and short KBs, we successfully optimized the system’s abil-
ity to detect various DDoS attack types, including DDoS-
ICMP Flood, DDoS-UDP Flood, DDoS-TCP Flood, and
DDoS-PSHACK Flood.
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