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Abstract

The generation of synthetic tropical cyclone(TC) tracks for
risk assessment is a critical application of preparedness for
the impacts of climate change and disaster relief, particularly
in North America. Insurance companies use these synthetic
tracks to estimate the potential risks and financial impacts of
future TCs. For governments and policymakers, understand-
ing the potential impacts of TCs helps in developing effective
emergency response strategies, updating building codes, and
prioritizing investments in resilience and mitigation projects.
In this study, many hypothetical but plausible TC scenarios
are created based on historical TC data HURDAT2 (HUR-
ricane DATA 2nd generation). A hybrid methodology, com-
bining the ARIMA and K-MEANS methods with Autoen-
coder, is employed to capture better historical TC behaviors
and project future trajectories and intensities. It demonstrates
an efficient and reliable in the field of climate modeling and
risk assessment. By effectively capturing past hurricane pat-
terns and providing detailed future projections, this approach
not only validates the reliability of this method but also of-
fers crucial insights for a range of applications, from disaster
preparedness and emergency management to insurance risk
analysis and policy formulation.

Introduction

Many coastal U.S. communities are highly susceptible to
significant hurricane and flood damage from sea level
rise, high tides, storm surges, and extreme rainfall due to
dense populations, high property values, and disproportion-
ately vulnerable populations in low-lying areas. The fre-
quency of billion-dollar weather-related disasters is rising
steadily (NOAA National Centers for Environmental In-
formation (NCEI) 2018). Severe hazards, including torna-
does, hail, and wind, caused over 32B of property damage
in 2017 (NOAA National Centers for Environmental Infor-
mation (NCEI) 2018; Insurance Journal 2016), and wind
and tornadoes have killed an average of 160 people annu-
ally in the last 10 years (National Weather Service 2018).
In urban centers such as South Florida, this is not a fu-
ture phenomenon that will be triggered by, for example, fu-
ture sea level rise, but rather already a common occurrence
that is generally referred to as “nuisance or recurrent flood-
ing” (Valle-Levinson, Dutton, and Martin 2017; Wdowinski
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et al. 2016). For instance, recently, one neighborhood in the
Florida Keys was flooded for almost three months just by
tides— an unprecedented event in that locality that was not
predicted. Much of this increased flooding of heavily urban-
ized areas is attributable to recent sea level rise and changing
ocean dynamics (Ezer 2013; Ezer and Atkinson 2014).

Artificial intelligence (AI) and machine learning (ML)
have been utilized by diverse environmental science user
groups to revolutionize the understanding and prediction
of high-impact atmospheric and ocean science phenomena
and to create new educational pathways to develop a larger
and more diverse AI/ML and environmental science work-
force. For example, prior work (Gagne II et al. 2019; Gagne
et al. 2017; Lagerquist, McGovern, and Gagne II 2019;
McGovern et al. 2017) demonstrated that Al techniques
can skillfully predict convective hazards (Board, Ocean
Studies, National Academies of Sciences, Engineering, and
Medicine et al. 2016). Testing in the National Oceanic and
Atmospheric Administration (NOAA)’s Hazardous Weather
Testbed (Clark et al. 2012) demonstrated the need for trust-
worthy Al. AI/ML techniques are useful and promising as
they can effectively identify, through data mining, complex
relationships between external drivers and urban flooding
using observational datasets. By employing reverse engi-
neering and automatic learning methodologies it is often
possible that AI/ML is able to solve complex, unstructured
problems with a fraction of the computing power and exe-
cution time required by traditional direct and first-principle
methods. A board agent demonstrates the importance of
AI/ML techniques in environmental science. NOAA and
DOE have identified Al as a high priority in their new strate-
gic Al plan (NOAA 2019), within Objective 4.3: ”Support
the National Artificial Intelligence Research Institutes Pro-
gram with NSF by collaborating with appropriate institutes
on AL

Despite this critical importance, the ability to simulate
the tropical cyclone’s state at the scales needed to under-
stand and manage these uses and their impacts is not read-
ily accessible to key stakeholder communities. Several bar-
riers inhibit acquiring real-world or appropriate synthetic
datasets, processing these data, and efficiently incorporat-
ing data from different phenomena and scales for tropical
cyclone system research. Firstly, there is a clear shortage in
the hurricane data we have. When modeling hurricanes, we



Figure 1: Flowchart of the hurricane track simulator

look at three main areas: hazard, exposure, and vulnerabil-
ity. Each area needs its own set of data. But often, this data
is incomplete, inconsistent, or even missing (Klotzbach et al.
2020). Furthermore, the current best datasets (fan 2023) of
hurricanes cover around 100 years, and even within this,
only some of the data is considered trustworthy and com-
plete, as mentioned in (Powell et al. 2005).

Secondly, existing approaches (Alipour et al. 2022; Pow-
ell et al. 2005) often overlook comprehensive temporal and
spatial analyses before generating synthetic data for tropical
cyclone trajectories. This oversight means that they may not
fully account for changes in hurricane behavior over time
or across different locations. Understanding the patterns of
hurricanes across various time frames (e.g., seasons) and ge-
ographical regions is crucial for accurate predictions. For
example, the trajectory of a hurricane in a coastal region
may differ significantly from one that forms further out at
sea (detailed in section 3.6). Similarly, hurricanes in con-
secutive years may share more characteristics than those
from decades apart. However, SOTA methods (Wei et al.
2023; Moradi Kordmahalleh, Gorji Sefidmazgi, and Homai-
far 2016; Mudigonda et al. 2017; Bose, Pintar, and Simiu
2022) often overlook temporal and spatial variations, risk-
ing the loss of critical information and leading to inaccurate
or unreliable predictions.

To address these challenges, we begin by analyzing both
the temporal and spatial tendencies of tropical cyclone
tracks. We use the ARIMA model to estimate future tropi-
cal cyclone track counts based on temporal trends and apply
K-MEANS clustering to group and sample tropical cyclone
tracks with similar spatial characteristics. After that, we pick
the most representative tropical cyclone tracks as seeds and
use an Autoencoder to simulate hurricane patterns derived
from these seeds. We make the following contributions in
this paper:

* We explore the feasibility of combining statistical model-
ing and data-driven learning to simulate tropical cyclone
tracks for risk prediction. Specifically, we adopt statisti-
cal models (i.e., the ARIMA model and K-MEANS) as
the pre-processing step to extract input data for an Au-
toencoder.

* We introduce a framework — HurriCast, an automated
yet lightweight software tool for generating synthetic
tropical cyclone tracks for specific regions. These syn-
thetic tracks are particularly valuable for stakeholders

who have sparse datasets, enabling more comprehensive
analysis and improved decision-making.

* We demonstrate the effectiveness of HurriCast by vali-
dating it against real-world hurricane data, showing that
it can accurately reproduce key features of tropical cy-
clone behavior. This validation underscores the utility
of our approach in augmenting existing datasets and en-
hancing the reliability of hurricane risk assessments.

Background and Related Work

Hurricanes, powerful tropical cyclones characterized by in-
tense winds and heavy rainfall, are phenomena that can
inflict immense damage on communities, ecosystems, and
economies. Predicting the track (i.e., path and intensity) of
these storms has long been a crucial aspect of meteorologi-
cal research and public safety efforts. Most hurricanes orig-
inate from specific regions, like the Western North Atlantic
or the Eastern North Pacific. Once formed, hurricanes tend
to follow general tracks/patterns based on prevailing winds,
oceanic conditions, and other atmospheric factors. Hurri-
canes can make landfall, causing massive destruction, or dis-
sipate over water. The location and timing of landfall can
vary widely, making predictions challenging.

The most accurate way to forecast future hurricane events
is using numerical methods, which consists of the following
steps: (1) create an atmospheric model using a grid system
for the designated region; (2) set initial conditions based on
data from satellites, weather balloons, and ocean buoys; (3)
incorporate important weather variables to make short-term
predictions about atmospheric changes; (4) examine the in-
teractions between the atmosphere and ocean to estimate the
hurricane’s path and strength; (5) use ensemble forecasting,
which involves running several simulations with varied start-
ing conditions, to refine and broaden the forecast’s accuracy.
This approach, however, is impractical as the computation of
each hurricane track can be extremely time-consuming.

Instead, the synthesis of hurricane tracks is a lightweight
process of generating potential future hurricane tracks based
on historical and current data. The objective is to prepare
for scenarios that, while not having occurred historically, are
plausible given known patterns and conditions. These syn-
thetic tracks provide an enriched dataset that aids in compre-
hensive risk assessment, especially in regions with limited
historical hurricane data. There are several ways to generate



Figure 2: Hurricane frequency across different years

the hurricane tracks.

Statistical Methods. Traditional methods mainly involve
statistical models that rely on historical hurricane track data.
These models take into account the initial conditions and
current atmospheric state and then extrapolate potential fu-
ture pathways based on historical patterns. Many studies
have utilized statistical and dynamical climate models ((Go-
erss 2000), (Knutson et al. 2013) ) to model North Atlantic
tropical cyclone activity and how they are affected by dif-
ferent baseline climate conditions. Study (Nakamura et al.
2021) proposed a climate-conditioned simulation of North
Atlantic tropical storm tracks to assess early-season hurri-
cane risk and considered both the influence of the large-scale
climate conditions and the historical tropical storm data.
Although directly using the past hurricane datasets is ap-
pealing, statistical forecast methods still have a poor perfor-
mance with respect to dynamic models(Giffard-Roisin et al.
2018).

Stochastic Methods. Some synthesis methods use stochas-
tic or probabilistic models. These models introduce an
element of randomness, ensuring a wide variety of po-
tential tracks, thus broadening the scope of risk assess-
ments(Weinstein et al. 2021; Pinelli et al. 2020). Goerss et
al.(Goerss 2000) used a dynamical climate model to model
North Atlantic TC activity(including occurrence, landfall
rates and etc.) and changes according to the baseline condi-
tions. However, these methods are in low resolution and ex-
pensive to run repeatedly(Vitart, Anderson, and Stern 1997;
Camargo, Barnston, and Zebiak 2005).

Machine Learning Methods. Recent advancements in
technology have introduced machine learning and deep
learning methods for hurricane track prediction. These
methods use complex algorithms trained on vast amounts of
data to predict hurricane tracks, potentially uncovering novel
patterns and relationships not apparent in traditional models.
A model designed by Moradi et al.(Moradi Kordmahalleh,
Gorji Sefidmazgi, and Homaifar 2016) uses a sparse recur-
rent neural network from only track data for trajectory pre-
diction of Atlantic hurricanes. Mudigonda et al. (Mudigonda
et al. 2017) designed a hybrid ConvNet-LSTM network to
learn the (z,y) trajectory coordinates and showed their re-
sults on the two-dimensional fixed scale map. In Bose et al.
study(Bose, Pintar, and Simiu 2022), a deep learning ap-
proach was used to simulate Atlantic hurricane tracks and
features, achieving better accuracy compared to traditional

statistical methods. However, these studies can not generate
hurricane tracks based on the temporal data to give several
years of hurricane risk assessment which is interested by in-
surance industry.

In this research, we champion a hybrid strategy: com-
mencing with the pre-processing of historical data via statis-
tical methods to derive representative tracks; Subsequently,
stochastic noise is incorporated into a machine learning
framework, enabling perturbations to authentically emulate
hurricane track patterns.

Figure 3: Joint probability of hurricane frequency by longi-
tude and latitude (grid size: 5°)

Methods
Design Overview

The workflow of HurriCast, illustrated in Figure 1, is de-
signed to be user-friendly and fully automated. Users only
need to provide the historical hurricane track data for the
target region. HurriCast then analyzes this data to forecast
future hurricane coverage and intensity.

HurriCast employs a hybrid method that integrates sta-
tistical models with data-driving methods to conduct both



temporal and spatial analyses, aimed at predicting future
hurricane coverage and damage. We introduce three core
models: the ARIMA time series prediction model for fore-
casting hurricane frequency, the K-Means clustering model
for analyzing track distribution, and the Autoencoder model
for simulating comprehensive hurricane coverage (Section ).
We use the ARIMA model to forecast the frequency of fu-
ture hurricane tracks based on historical data (Section ).
Next, the K-means algorithm categorizes historical hurri-
cane tracks to identify distribution patterns within specific
clusters (Section ). Finally, the Autoencoder neural network
simulates comprehensive hurricane coverage across the tar-
get region, with precise inputs and rigorous training mecha-
nisms optimizing the model (Section ).

Intensity of Tropical Cyclones

We use the North Atlantic basin’s historical hurricane track
data, HURricane DATa 2nd generation (HURDAT?2) (fan
2023), provided by the National Hurricane Center (NHC).
This database is a NOAA data set that offers comprehensive
six-hourly information of tropical cyclones and subtropical
cyclones in a comma-delimited, text file format. This infor-
mation includes, but is not limited to, location, maximum
winds, and central pressure of all known tropical cyclone
events. This database records tropical cyclone activity in
the Atlantic and East Pacific basins from 1851 to 2021. As
a public resource, HURDAT?2 provides data for analyzing
trends, characteristics, and patterns of historical tropical cy-
clones, including hurricanes, typhoons, and tropical storms.

Temporal-based Analysis. Hurricane occurrences in the
North Atlantic basin exhibit temporal variations across both
months and years. We first analyze the hurricane trend across
different years. Figure 2 illustrates the frequency of hurri-
cane events from 1851 to 2021; here, the x-axis represents
the historical years analyzed, while the y-axis corresponds
to the frequency of hurricanes. A review of Figure 2 reveals
that the frequency of hurricanes fluctuates among different
years, with a discernible, albeit slight, upward trend across
the tracking period. Then, we analyze the characteristics of
hurricanes in each month. The Atlantic hurricane season tra-
ditionally spans from June to November each year. While
hurricanes may manifest in any month, the incidence is pre-
dominantly concentrated within this season, with September
standing out as both the most frequent and the most damag-
ing month for hurricanes.

Spatial-based Analysis. Hurricanes primarily form in
tropical regions, where warm ocean waters supply the ther-
mal energy required for initiation. In our study, we examine
hurricane patterns through longitude and latitude, focusing
on the start points of individual hurricane tracks. These start-
ing locations reveal complex factors influencing hurricane
formation, including sea surface temperatures and prevailing
atmospheric conditions. Figure 3 presents the joint probabil-
ity density distributions of the origin of the hurricane by lon-
gitude and latitude. The top bar chart displays the marginal
distribution of origins by longitude, while the right-hand bar
chart represents the marginal distribution by latitude. No-
tably, hurricanes tend to concentrate around some places
(such as 80° West on longitude and 13° North on latitude).

Tropical Cyclone Occurrence

We begin our analysis by applying the Autoregressive In-
tegrated Moving Average (ARIMA) model to predict hurri-
cane frequency (i.e., the number of hurricane tracks). The
ARIMA model (Kotu and Deshpande 2019), a statistical-
based numerical method, is commonly employed for time
series analysis, particularly in forecasting univariate time se-
ries data.

ARIMA  models are typically denoted by
ARIMA(p,d,q). Each of these parameters — p, d,
and ¢ — are non-negative integers that represent distinct
characteristics of the time series data and the model: The
parameter p represents the order of the AutoRegressive
(AR) component. It signifies the number of previous obser-
vations or lags that are taken into account when predicting
the current observation. The parameter d is the degree of
differencing required to make the time series stationary.
A time series is said to be stationary when its statistical
properties (like mean and variance) do not change over time.
Stationarity is essential for many time series forecasting
methods, as it makes them more reliable. The parameter ¢
represents the order of the Moving Average (MA) compo-
nent. It denotes how many past forecast error terms are used
to predict the current observation. To determine the optimal
values for these parameters, we conducted a grid search,
and set up the parameters as (4, 1, 1) in our study.

Start Points of Tropical Cyclones

Given the estimated hurricane frequency, our next step is to
project how hurricane tracks will be distributed across a spe-
cific target region. To achieve this, we employ a sampling-
based approach to figure out the number of hurricanes at ev-
ery grid point.

In the first step, we use the K-means algorithm to examine
historical hurricane tracks from the target region. This en-
tails grouping hurricane tracks with similar movement pat-
terns into separate clusters.

On the second step, we analyze how the distribution of
hurricane paths varies within each individual cluster. Then,
based on the estimated hurricane frequency, we perform a
sampling process to estimate the frequency distribution on
each cluster (the number of hurricane tracks per cluster).

For the third step, we systematically go through each clus-
ter in historical dataset, selectively extracting typical hurri-
cane tracks with the corresponding proportion.

This approach helps us create a subset of hurricane start-
ing points and hurricane tracks that genuinely represent in-
stances for each cluster. These starting points play a pivotal
role in determining the hurricane number within each clus-
ter, while the extracted hurricane tracks serve as seeds for
estimating hurricane coverage in the following process - an
Autoencoder model that will be elaborated.

The Coverage of Tropical Cyclones

Based on the hurricane distribution per cluster and their cor-
responding seeds (i.e., the associated hurricane tracks), we
leverage an Autoencoder model to replicate hurricane cov-
erage across the target region.



(a) Heat map of historical hurricane tracks for last 100 years

(¢) Historical annualized frequency at Florida

(b) Heat map of generated tracks of hurricane activity for 100

years using HurriCast

(d) Generated annualized frequency at Florida using HurriCast

Figure 4: Comparison of the synthetic tracks (i.e., HurriCast) and historical tracks (i.e., the ground-truth) form frequency.

The Autoencoder (Hinton and Salakhutdinov 2006), a
widely utilized neural network model, adeptly generates a
compact representation of input data. This architecture com-
prises two essential components: an encoder and a decoder.
The encoder transforms input data into a latent space, while
the decoder reconstitutes the original data from this latent
representation.

In this study, we introduce a perturbation module into the
encoder that introduces Gaussian noise to the latent features.
This step introduces an element of randomness, simulating
the variability in hurricane occurrences. Notably, it’s impor-
tant to recognize that simulating the detailed process of hur-
ricane generation using numerical methods is intricate and
can be challenging to achieve optimal accuracy (Jamous,
Marsooli, and Miller 2023). In our approach, our objective is
to provide an estimation of hurricane coverage for insurance
purposes. We adopt a more straightforward and lightweight
methodology, employing historical data as seeds and intro-

ducing Gaussian noise to simulate the stochastic nature of
hurricane occurrences.

Specifically, both the encoder and decoder consist of four
fully connected layers augmented by two batch normaliza-
tion layers. In the disturbance addition module, we use ran-
dom multiplicative noise, we multiply the features output
by the encoder by a positive number (between O and 1) that
obeys a random normal distribution and then feed the trans-
formed features into the decoder. At last, the decoder outputs
new hurricane tracks.

For the input data, we choose an alternative approach to
using raw data from HURDAT?2. Instead, we employ spa-
tial interpolation on hurricane trajectories, resulting in uni-
formly spaced trajectory points. These points undergo nor-
malization to ensure consistent scaling, subsequently serv-
ing as the input data. This interpolation procedure plays
a pivotal role in crafting a well-organized and evenly dis-
persed dataset, thereby elevating the quality of subsequent



(a) Historical tropical cyclone
(CAT>2)

(d) Generated tropical cyclone
(CAT>2)

(b) Historical tropical cyclone
(CAT>3)

(e) Generated tropical cyclone
(CAT>3)

(c) Historical tropical cyclone
(CAT>)5)

(f) Generated tropical cyclone
(CAT>5)

Figure 5: Comparison of different categories (CAT) for generated and historical hurricane tropical cyclone.

analyses. Post-interpolation, each hurricane trajectory is
condensed into a set of 20 data points, each characterized
by three dimensions: latitude, longitude, and minimum pres-
sure.

Throughout the model training phase, our choice of loss
function is the Mean Squared Error (MSE), with optimiza-
tion performed by the Adam optimizer utilizing a learning
rate of le-3. Also, to counteract overfitting during training,
we periodically introduce random Gaussian noise.

Evaluation

Experimental setup. To assess the efficacy of HurriCast, we
utilized historical data from 1875 to 2010 from HURDAT2
as our training dataset. This dataset comprises 1134 hurri-
cane tracks. Each track encompasses several track points,
with each point recorded at 6-hour intervals. These points
detail the hurricane’s longitude, latitude, and intensity. Uti-
lizing this dataset, we predicted the hurricane coverage over
a 10-year span, from 2011 to 2021. The historical data from
this period served as the ground-truth to assess the per-
formance of HurriCast. Within HurriCast, Pytorch (Paszke
et al. 2019)was employed for model training and inference.

To better quantitatively compare the hurricane coverage
statistics obtained from the synthetic tracks with those from

the historical tracks, we calculated the statistics from the
synthetic tracks and presented them using a heat map. Fig-
ure 4 evaluates HurriCast’s ability to reproduce historical
North Atlantic tropical cyclone frequencies through compar-
isons of 100-year basin-wide frequency maps (Fig. 7a,b) and
annualized frequencies impacting Florida (Fig. 7c,d). The
HurriCast-generated frequency heat map (Fig. 7b) exhibits a
high degree of agreement with the historical heat map (Fig.
7a), capturing the peak frequency corridor extending from
the mid-Atlantic through the Caribbean and Gulf of Mex-
ico. HurriCast also skillfully replicates observed cyclone fre-
quencies over Florida (Fig. 7d), with a peak annualized fre-
quency of 0.36-0.50 cyclones per year in the Florida Keys,
closely matching the historical maximum of 0.36-0.50 (Fig.
7c). These results demonstrate that HurriCast can generate
synthetic hurricane climatologies that are highly consistent
with observed frequencies on both basin-wide and regional
scales relevant for landfall risk assessment.

Figure 5 compares synthetic tropical cyclone tracks gen-
erated by HurriCast to historical tropical cyclone tracks for
three intensity categories: tropical storms and hurricanes
(CAT>2), major hurricanes (CAT>3), and Category 5 hur-
ricanes (CAT>5). The spatial distribution and geometries of
the HurriCast tracks (Fig. 7d-f) display remarkable similar-



ity with the historical record (Fig. 7a-c), particularly for the
most intense cyclones. HurriCast generates synthetic Cate-
gory 5 tracks (Fig. 7f) that closely match the observed clus-
tering and trajectories of historical Category 5 tracks (Fig.
7c). However, the HurriCast tracks noticeably extend over
continental land masses, especially for the lower intensity
categories (Fig. 7d,e), while historical tracks rapidly dissi-
pate after landfall due to the loss of the warm ocean as an en-
ergy source. This suggests that future refinements of Hurri-
Cast should account for land interaction to yield more phys-
ically realistic track life cycles. Nonetheless, these results
demonstrate HurriCast’s ability to generate realistic tropical
cyclone tracks across the intensity spectrum that are consis-
tent with historical climatology.

Several general qualitative results can be observed: (1)
The spatial trends along the Atlantic basin are consistent.
This suggests that HurriCast can accurately model the spa-
tial trends of hurricane wind hazards. (2) Differences exist
between the wind hazards estimated from historical tracks
and those from synthetic tracks. This suggests that the syn-
thetic tracks exhibit less variability than the historical tracks
from the past decade in the Atlantic basin. Given that the
synthetic track model utilizes an extensive historical dataset,
it naturally produces more conservative results. (3) The
severity of hurricane impacts, measured in terms of poten-
tial damage, exhibits a similar pattern in both historical (Fig-
ure 5a, b and c) and synthetic data (Figure 5 d, e, and f).

Summary and Future Work

Future refinements of HurriCast should focus on improv-
ing the model’s representation of land interactions, partic-
ularly for lower-intensity storms, to more accurately simu-
late the rapid dissipation of tracks after landfall and produce
more physically realistic track life cycles. Moreover, real-
time hurricane prediction is a critical area for further de-
velopment, various methods, such as Generative Adversarial
Networks (GANs) and Long-Short-Term Memory (LSTM)
networks could be adopted in this problem.
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