
PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Revealing the Utilized Rank of Subspaces of Learning in Neural Networks

Isha Garg, Christian Koguchi, Eshan Verma, Daniel Ulbricht
Apple

{i_garg, christian_j_koguchi, everma, dulbricht}@apple.com

Abstract

In this work, we study how well the learned weights of a
neural network utilize the space available to them. This no-
tion is related to capacity, but additionally incorporates the
interaction of the network architecture with the dataset. Most
learned weights appear to be full rank, and are therefore not
amenable to low rank decomposition. This deceptively im-
plies that the weights are utilizing the entire space available
to them. We propose a simple data-driven transformation that
projects the weights onto the subspace where the data and the
weight interact. This preserves the functional mapping of the
layer and reveals its low rank structure. In our findings, we
conclude that most models utilize a fraction of the available
space. For instance, for ViTB-16 and ViTL-16 trained on Ima-
geNet, the mean layer utilization is 35% and 20% respectively.
Our transformation results in reducing the parameters to 50%
and 25% respectively, while resulting in less than 0.2% accu-
racy drop after fine-tuning. We also show that self-supervised
pre-training drives this utilization up to 70%, justifying its
suitability for downstream tasks.

Introduction
The notion of ‘capacity’ of a network becomes less clear
as we scale to large, deep neural networks. In practice, it is
often thought of as a function of the number of parameters
in the network. In this work, we shift out attention to the
concept of utilization, which we define distinctly from model
capacity in that it captures the interaction between both the
complexity of a trained network and the dataset its trained
on. We address utilization from a subspace perspective. Most
learned weights appear to be full rank, suggesting we cannot
trivially perform a low rank decomposition. In this work,
we show that only a fraction of these dimensions interact
with the data the weight operates on. We study the low rank
decomposition of the input and output to the layers rather
than the weights directly and find a simple modification that
preserves the layer mapping by projecting the weight onto
the subspaces of interaction. We refer to this as the effective
subspace where learning occurred, and the dimension of
this subspace as the utilized rank for that layer. This lower
dimensional subspace allows for easy decomposition and
efficiency by reducing the number of parameters and FLOPs.

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

It also allows us to compare different networks in terms
of their Mean Layer Utilization (MLU), a statistic that is
informational for studying the structure of networks.

Suppose the input and output for a given layer live on
subspaces S and T respectively. Then, projecting the input
onto S and the output onto T is invariant in the forward pass
up to some allowable L2 error. We show that performing these
two projections is similar to performing the forward pass with
a transformed weight matrix W , with its row space projected
onto S and its column space projected onto T . We upper-
bound the error resulting from this transformation, and show
that it can be driven down by controlling the spectral energies
of the input and output subspaces. This transformation reveals
the utilized rank of W , which we find to be far lower than
the intrinsic rank of the original W . We determine the rank
for a single layer by performing a binary search over the
singular values of S and T to limit the resulting error from
this transformation on the validation set. This allows us to
find the utilized ranks of all layers without retraining, with
a predictable and bounded accuracy drop that can easily be
recovered via finetuning.

Studying the layerwise utilized rank of different network-
dataset pairs suggests that most networks do not fully utilize
the weight-space available to them. This means that a straight-
forward low rank decomposition can significantly reduce the
number of parameters and FLOPs. For instance, we show that
ViT variants trained on ImageNet only have 20% - 35% mean
layer utilization, and can be decomposed to 25 to 48% of their
original size while reducing the original FLOPs by between
13 to 33%. The resulting drop in accuracy after finetuning is
less than 0.2%. We find that self-supervised pretraining uses
the available space better (MLU = 69%), making it suitable
for multiple downstream tasks. We also study the effect of
scaling the network and of increasing the dataset complexity.

Methodology

Preliminaries: The Input and Output Subspaces

For simplicity, we consider a fully connected layer of a neural
network. Let the input be to this layer be X ∈ RB×d, where
B is the batch size and each row vector x ∈ Rd. Let WT ∈
Rd×m be the weight that maps X from to Y ∈ RB×m . The
corresponding forward pass can be written as:



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

(a) Spectral energy spread of W and W’. The utilized rank becomes easily identifiable when
we transform W to W’

(b) Projecting W onto S resulting from trun-
cating the rank of X

Figure 1: Experiments on different layers of VGG11, CIFAR10

Y = XWT (1)

For the first layer of a neural network, X is real data such as
images. Similarly, the output of the layer would be dependent
on the overlap between the input space and the column space
of W , i.e. if the columns of W and X were orthogonal, the
output would be zero. Generalizing to all layers, let S be
the subspace of the input to the layer, with dimension kS .
The orthogonal complement of this subspace, S⊥ is d− kS
dimensional, and contains the space of inputs or activations
not occupied by the real input. We can find this subspace
using SVD, shown below

X = UXΣXV T
X (2)

where ΣX is a diagonal matrix of the d singular values σi and
the first kS rows of V T

X represents a bases for S. We define

the spectral energy ratio as eS =
∑kS

0 σ2
i∑d

0 σ2
i

such that we can
preserve 99% of the spectral energy e.g. es = 0.99 with kS
equal to the number of singular values (squared) that contain
99% of the total energy. We construct the projection matrix
PS that projects X onto S, denoted by XS as:

VS := VX [: kS ]; VS⊥ := VX [kS :] (3)

PS = V T
S VS ; PS⊥ = V T

S⊥
VS⊥ (4)

XS = XPS XS⊥ = XPS⊥ (5)

Similarly, let the subspace of the output be T and the
spectral energy eT correspond to the utilized rank kT . Similar
to equations for S, VT contains the bases for T found from
performing the SVD on Y and gives the projection matrix
for PT ∈ Rm×m. Further details for SVD computation are
provided in appendix section .

The Weight Transformation and the Utilized Rank
In the forward pass equation 1, replacing X with XS and Y
with YT should result in the forward pass mapping remain-
ing largely unaltered. This is equivalent to modifying W by
projecting its column space onto S and its row space onto T ,

resulting in a modified W ′ as shown below:

Y ≈ YT = Y PT (6)

= XWTPT (7)

≈ XPSW
TPT (8)

=⇒ Y ≈ XW ′T; where W ′ := PSW
TPT (9)

We refer to the rank of W ′ as the utilized rank since this
transformation is data-dependent and captures the sub-
space overlap between the weight-space and the data-
space.

In Figure 1a, we show the spectral energy distribution of W
and W ′ for different layers of VGG11 trained on CIFAR10
data. From the figure, we can see that the spectral energy of
W has a wider distribution than W ′, obfuscating the true
rank. Transforming W into W ′ compacts the spectral
energy and allows us to identify the utilized rank more
easily that naively applying the SVD directly.

For later layers, we note that the utilized rank is a small
fraction of the available dimensions (23/512), highlighting
the overparametrization of VGG architectures for CIFAR10.
The resulting error from replacing W by W ′ in equation 1
can be upper-bounded by choosing appropriate dimensions
for the input and output subspaces kS and kT .

∥E∥2 = ∥XWT −X(PTWPS)
T ∥2 (10)

≤ (1− eT )∥Y ∥2 + (1− eS)∥X∥2∥W∥2 (11)

The proof utilizes the fact that the Frobenius norm is the
sum of the square of singular values (see Appendix section ).

How to choose kS and kT The error per layer is a function
of eS and eT , and we use validation accuracy to inform us
of the maximum kS and kT we can set before suffering a
performance drop. In Figure 1b, we vary kS for a single
layer of VGG11 trained on CIFAR10 and plot the impact
on eS (black), the accuracy when we replace W by WS as a
ratio of the original accuracy (red), and the norm difference
between W and WS (green). For this layer, we note that when
kS reaches ≈ 200/1024 dimensions, the transformed WS

does not result in an accuracy drop even though WS differs



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Figure 2: Utilization snapshots of different dataset-network pairs.The rank of the unaltered W is plotted for each layer in the
dotted line, and the rank of the transformed W as the solid line. The brackets list the parameters and accuracy of the original and
decomposed, finetuned network. FT refers to finetuning from SWAG (Singh et al. 2022), in a linear or end-to-end fashion.

significantly from W in norm (≈ 150). When kS = 200 and
eS = 0.8, retaining only 80% of the energy was sufficient to
achieve full accuracy.

Hence, to maximize savings, we perform a binary search
on eS and eT for each layer, while using validation accuracy
drop as the signal to inform the stopping criterion. We call
the accuracy drop tolerance for each transformation, (S or
T projection for each layer) as ϵ, and set it to 0.1 for our
experiments.

After estimating kS , kT that conforms to this ϵ error for
all layers, the transformed network would have an accuracy
drop = 2 × #layers × ϵ%, which scales with the depth of
the network. However, since we largely preserve the func-
tional mapping of each layer, we find that finetuning is
able to recover the allocated drop. When finetuning, we
decompose each layer into 2 layers of reduced rank to ensure
that finetuning does not increase the searched rank.

Benefits of Studying the Utilized Ranks of Layers
Mean Layer Utilization: We describe the utilization statistic
for a layer as the ratio of the rank of W ′ to the maximum
rank possible. Suppose the utilized rank of a layer with W ∈
Rm×d is r, then the layer utilization is r

min(m, d) . The rank of
W ′ is constrained to the rank of the product of PSW

TPT , so
we can calculate the rank r for a given layer as min(kS , kT ).

A utilization close to 1 implies that the learnt column
space of the weight overlaps fully with the subspace of the
input to the layer, whereas a utilization close to 0 implies
that the spaces are orthogonal, resulting in little to no signal
being passed forward. The utilized rank depends on both the
network architecture and the dataset, allowing us to capture
a notion of capacity that is more informative than just the
number of FLOPs or parameters. We average this score over
all convolutional and linear layers, and call this the MLU
(mean layer utilization) score of the network. A higher MLU
reveals that the network is well utilized, while a lower
MLU allows for low-rank decomposition for efficiency.

Savings in FLOPs and parameters: This low dimension-
ality of W results in a low rank decomposition that directly

reduces memory and compute costs if the rank r ≤ m×d
m+d .

Hence, for all layers that meet this criterion, we decompose
the layer into 2 layers with weights of shapes r×d and m×r,
respectively. This reduces the total parameters and compute
approximately by a factor of (m×d)

r(m+d) .

Utilization Snapshot: To study the layer-specific dynam-
ics of rank utilization, we chart the rank of the learned W ,
the utilized rank r, and the maximum rank possible at each
layer as a utilization snapshot of a trained network. This can
visualize the maximum per-layer utilization across various
network and dataset combinations. We can also utilize this to
understand the effects of different pretraining and finetuning
techniques.

Results and Discussion
We perform experiments on VGG (Simonyan and Zisserman
2015), ResNet (He et al. 2015), ViT (Dosovitskiy et al. 2021),
DeiT (Touvron et al. 2021), Swin Transformer (Liu et al.
2021), and Resnet variants (Zagoruyko and Komodakis 2017)
on CIFAR10, CIFAR100 (Krizhevsky and Hinton 2009), and
ImageNet (Deng et al. 2009). We use pretrained ViTs and
ResNets from torchvision (Paszke et al. 2019) and DeiTs and
SWIN transformers from TIMM (Wightman 2019)1. We use
Deepspeed (Rasley et al. 2020) for profiling FLOPs with a
batch size of 32. We define the drop per layer at ϵ = 0.1%.
For ViTL-32, Swin-Base, and Swin-Large, the finetuned ac-
curacy drop for ϵ = 0.1% was greater than 1%, and was
reduced to 0.05%. We use SVD for calculating ranks. To
rule out very small singular values arising from numerical
errors, we assign the rank as the number of singular values
that explain 99.99% spectral energy. Finetuning is done with
each layer decomposed into two layers of reduced rank to
ensure it does not increase rank. However, when reporting
final savings, we decompose only those layers where ma-
trix decomposition would result in a reduction in parameters.
Finetuning hyperparameters are in Appendix section .

1For CIFAR, we use the architectures and hyperparameters from
github.com/bearpaw/pytorch-classification



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Architecture
Orig Acc

(%)
Orig MLU

(%)
Acc - Ours

(%) (∆)
True MLU

(%)
Params
Ratio

Flops
Ratio

ViTB16 80.9 94 80.7 (-0.2) 35 0.48 0.33
ViTB32 75.7 94 75.8 (+0.1) 34 0.46 0.33
ViTL16 79.5 81 79.5 (+0.0) 20 0.25 0.13

ViTL32* 76.9 92 76.2 (-0.7) 26 0.36 0.26
DeiT - Tiny† 72.1 / 75.3 98 75.0 (-0.3) 86 0.99 0.99
DeiT - Small† 79.8 / 80.1 98 80.3 (+0.2) 74 0.89 0.89
DeiT - Base† 81.8 / 82.0 98 81.5 (-0.5) 49 0.64 0.65
SWIN - Tiny 81.2 98 81.3 (+0.1) 65 0.86 0.83
SWIN - Small 83.3 98 83.4 (+0.1) 60 0.81 0.77
SWIN- Base* 85.2 98 84.5 (-0.7) 66 0.86 0.83

SWIN - Large* 86.3 98 85.3 (-1.0) 53 0.74 0.70
ResNet34 73.2 99 72.2 -(1.0) 66 0.77 0.76
ResNet50 80.1 99 79.4 (-0.7) 60 0.83 0.74
ResNet101 81.5 99 80.5 (-1.0) 47 0.66 0.59

WideResNet50_2 81.2 99 80.6 (-0.6) 43 0.68 0.58
WideResNet101_2 82.3 99 81.7 (-0.6) 33 0.51 0.44

Table 1: Results for Utilized Rank Decomposition on ImageNet. ViT (Dosovitskiy et al. 2021) and ResNet (He et al. 2015;
Zagoruyko and Komodakis 2017) pretrained models from torchvision (Paszke et al. 2019), DeiT (Touvron et al. 2021) and
SWIN(Liu et al. 2021) from TIMM (Paszke et al. 2019) *implies ϵ = 0.05%, 0.1% otherwise. †Finetuning the original DeiT
models results in improved performance.

Utilization Statistics of Popular Networks

Studying layerwise utilization can help us understand the
suitability of the model for the dataset. In Figure 2, left, we
show the layer-utilization for VGG11 and VGG19, for the
same dataset CIFAR10. We see that they achieve similar layer
utilization, with a peak in utilization around layers 4-6 for
the same task. While the original parameters grow from 9M
to 20M, the utilized parameters stay stable around 2.5M.

In Figure 2, center, we evaluate the effect of increasing
dataset complexity on a static architecture to illustrate higher
network utilization for CIFAR100 than CIFAR10. Not only
is the utilization for CIFAR100 higher, but the utilization at
higher layer numbers could indicate the usage of higher level
features required to solve a more complex task.

From Tables 1 and 4, we note that the original models have
close to 100%MLU , deceptively implying that all the space
available for learning is well used. However, upon decompo-
sition, we find that the corresponding MLUs are quite low,
dipping to 20-35% for ViT variants on ImageNet. The fact
that ViTs are too big for ImageNet has been noted previously,
with the popularity of ‘Tiny’ variants.In fact, DeiT-Tiny uti-
lizes space quite well (99% true MLU compared to ViTL-16’s
20%), indicating that increasing size would indeed result in a
gain in accuracy. We note that DeiT networks show improved
performance when training for longer. For a fair comparison,
we finetune DeiT pretrained models from TIMM using the
same hyperparameters as ours, and compare against the fine-
tuned models. Both this original and finetuned accuracy for
DeiT models is reported.

Parameter and Compute Efficiency
In Figure 3, we study the effect of rank-decomposed and
finetuned models on different architecture-dataset pairs. We
plot the number of parameters against the accuracy, with the
number of FLOPs represented by the sizes of the bubbles.
We see that most networks shrink and move towards the top
left corner when decomposed and finetuned, implying an
increase in accuracy and decrease in number of parameters
and FLOPs. From tables 1 and 4, we note that we can sig-
nificantly reduce the size and FLOPs for most networks. For
instance, VGG19 on CIFAR10 can be reduced to just 11% of
the original size, consuming only 38% of the original FLOPs.
Similarly, parameters reduce to 25% and FLOPs to 16% on
ViTL-16 for ImageNet. On ImageNet, we see drops and in-
creases in accuracy of less than 1% On CIFAR, we note that
finetuning accuracies never drop compared to original, some-
times increasing up to 2% over the baseline. We attribute this
potentially to an increased regularization effect from using
low rank weights for small datasets.

Scaling Network Size and Dataset Complexity
We show the effect of scaling a network in the same family
for the same dataset in Figure 3, left, with numbers in Table
4. We see that VGG13, VGG16, and VGG19 all converge to
very similarly sized models on CIFAR10 with a very similar
accuracy upon decomposition, despite being different in their
original format. This indicates that a bigger network is not
necessarily beneficial for CIFAR10.

However, we note that all networks report 10-20% higher
MLU when we scale up the dataset complexity, going from
CIFAR10 to CIFAR100, also seen in in Figure 3, center. This



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Figure 3: Visualizing the change in accuracy, number of parameters and FLOPs (size of bubble) of the decomposed, finetuned
model. ϵ is the accuracy drop tolerance per layer during rank search.

implies that the available capacity is being better utilized by
larger datasets. Hence, our method serves to incorporate both
the notion of capacity of the network, and its interaction with
the complexity of the dataset.

Varying the Acceptable Accuracy Drop per Layer

We set the acceptable accuracy drop per layer, ϵ, to 0.1%,
resulting in a total accuracy drop of 0.2%×#layers. In Fig-
ure 3, we show the effect of increasing or decreasing this
hyperparameter for ViTB-16 (numbers in Appendix Table 2).
Even when using a smaller drop of 0.01% per layer, we can
still reduce the network to 76% of the parameters and 58%
of the FLOPs while gaining 0.4% accuracy improvement, in-
dicating that ViTB-16 is too large of a network for ImageNet.
The smallest model resulting with ϵ = 0.5% consumes only
31% of the parameters and 20% of the original FLOPs, and
shows an accuracy drop of less than 1%. While ϵ should be
tuned for every model and dataset pair, we find that 0.1%
and 0.05% give good results across various architectures and
datasets.

Effect of Pretraining on ViTs

In Figure 2, right, we evaluate the impact of weakly super-
vised pretraining (SWAG (Singh et al. 2022)) on layer utiliza-
tion on downstream tasks. All models start close to maximum
rank shown in the dotted lines. [FT-LIN] refers to the net-
work that was frozen after pretraining with only a linear head
finetuned on ImageNet. The frozen weights learned from
self supervised pretrained utilize the available space to the
highest extent (MLU = 69%), reflecting its suitability for
downstream tasks.

The model finetuned, end-to-end on ImageNet [FT-E2E]
shows a drop in layer-utilization, especially at later layers,
since it is altered for the classification task. Training a model
from random initialization [scratch] yields a bespoke model
for ImageNet and shows lower layer utilization (MLU =
35%). The increase in accuracy for the LIN-FT network using
our method is an unfair comparison, since we finetune end-
to-end after finding the rank.

Conclusion
In this work, we proposed the mean layer utilization, a sim-
ple data-dependent metric for determining how efficiently
a neural network learns a particular dataset. We do this by
creating projection matrices for each layer to transform the
learned weights onto a compact subspace dictated by the
input and output activations with a controllable error that is
upper bounded by the spectral energy of the input and output
subspaces eS and eT . This compact representation reveals
what we call the utilized rank of a matrix, which serves as a
notion of capacity that includes both the network architecture
and the dataset. Lastly, decomposing the layers onto these
data-dependent subspaces naturally lend themselves to a sim-
ple weight matrix factorization which can easily be applied
to various popular network architectures such as ViTs and
ResNets achieving significant parameter reduction without
compromising on downstream task performance.

Appendix
Upper-Bounding the Error From Transforming W
to W ′

We note that the projection matrices are symmetric since
PT
S = (V T

S VS)
T = PS . We use these to express the error

from transforming W to W ′ in terms of the perpendicular
spaces.

E = XWT −XW ′T (12)

= XWT −X(PTWPS)
T (13)

= XWT − (XPS)W
TPT (14)

= XWT −XSW
TPT (15)

= XWT − (X −XS⊥)WTPT (16)

= (XWT −XWTPT ) +XS⊥WTPT (17)

= (Y − YT ) +XS⊥(PTW )T (18)

= YT⊥ +XS⊥WT
T (19)

Since the Frobenius norm of a matrix, squared, is the sum
of its singular values, squared, our definition of S, T implies
the following relations:



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

X = XS +XS⊥ ; Y = YT + YT⊥ ; (20)

∥XS∥2 = eS∥X∥2; ∥YT ∥2 = eT ∥Y ∥2; (21)

∥XS⊥∥2 = (1− eS)∥X∥2; ∥YT⊥∥2 = (1− eT )∥Y ∥2
(22)

where all norms refer to Frobenius norm. Additionally,
we know that ∥A + B∥2F = Tr

(
(A+B)T (A+B)

)
=

∥A∥2F + ∥B∥2F + 2Tr(ATB). Since trace is invariant to
cyclic permutation and transpose), we have Tr(ATB) =
Tr(ABT ). Putting all this together, we can upper bound the
error in equation 19 as follows.

∥E∥2 = ∥YT⊥∥2 + ∥XS⊥WT
T ∥2 + 2Tr(YT⊥WTX

T
S⊥) (23)

= ∥YT⊥∥2 + ∥XS⊥WT
T ∥2 + 2Tr(Y PT⊥PTWXT

S⊥)
(24)

= ∥YT⊥∥2 + ∥XS⊥WT
T ∥2 + 2Tr(Y (PT⊥PT )X

T
S⊥)

(25)

= ∥YT⊥∥2 + ∥XS⊥WT
T ∥2 + 0 (26)

= ∥YT⊥∥2 + ∥XPS⊥WT
T ∥2 (27)

≤ ∥YT⊥∥2 + ∥XS⊥∥2∥WT
T ∥2 (28)

≤ ∥YT⊥∥2 + ∥XS⊥∥2∥WT ∥2 (29)

= (1− eT )∥Y ∥2 + (1− eS)∥X∥2∥W∥2 (30)

The trace in equation 26 reduces to zero since we multiply
two matrices in orthogonal spaces, resulting in zero. The
last inequality in equation 29 arises from applying triangle
inequality on W .

W = WT +WT⊥ (31)

∥W∥2 = ∥WT ∥2 + ∥WT⊥∥2 + 2Tr(WTWT⊥) (32)

∥W∥2 = ∥WT ∥2 + ∥WT⊥∥2 + 0 (33)

∥W∥2 ≥ ∥WT ∥2 (34)

Details of SVD to Find Bases
For computational ease, we perform the SVD of XTX ,
which directly gives us the bases and the square of the sin-
gular values. This only require storing the sum of XTX at
each layer, which can be parallelized over multiple batches of
forward passes. We do not need to store the outputs of a layer,
since we can find TTT from pre and post multiplying the
saved XTX with WT and W respectively, and then perform-
ing SVD on this smaller matrix. For CIFAR datasets, we use
the entire training dataset to perform PCA, and for ImageNet,
we choose 200 samples per class, resulting in 20,000 samples.
Because this computation is parallelizable across batches and
requires only forward passes, the cost of finding bases and
ranks of a space is negligible. Note The same analysis will
hold for bias/convolutional layer with the input being the
flattened patches convolved into the filters. The addition of
bias back into the analysis also does not alter the subspaces
under consideration, since we only look at each layer’s input
and output in isolation from all other layers.

Acc

(%)

ALU

(%)

Params

Ratio

Flops

Ratio

ViTB16: Original 80.9 93.8 1.00 1.00

ViTB16: ϵ = 0.01 81.2 57.9 0.76 0.58

ViTB16: ϵ = 0.05 80.8 38.7 0.54 0.37

ViTB16: ϵ = 0.1 80.7 34.6 0.48 0.33

ViTB16: ϵ = 0.5 79.9 22.5 0.31 0.20

Table 2: ViTB-16 pretrained network from torchvision, an-
alyzed for dimensions with varying ϵ (percentage accuracy
drop tolerance per transformation per layer ).

Computational Overhead of Binary Search for
Rank
There are three main overheads: performing SVD at each
layer, weight transformation and binary search on dimen-
sions. We perform highly parallelized SVD on the entire
training dataset of CIFAR, or 20,000 samples for ImageNet,
and performing SVD for all layers takes lesser time than
a training epoch in most cases. Each choice of eS and eT
results in an analytical weight transformation from just 2 ma-
trix multiplications, and we only need to perform a validation
pass for each level of binary search to find the direction of
binary search. There are a few hyperparamters that can be
optimized to speed this up, such as size of data to perform
SVD on, maximum levels of binary search, and conditions to
quit search on, such as acceptable accuracy drop and limiting
the change in dimensions between consecutive iterations.

The most expensive part of our computation is the vali-
dation accuracy checks for binary search for rank. Let the
weight matrix at a layer be m× d dimensional, with L lay-
ers in the network. For the first projection on S, we perform
SVD on a d × d matrix, and a binary search on the result-
ing d singular values. Each level of binary search performs
one projection to get W ′ and one validation accuracy check.
This means that we have O(log d) validation accuracy check.
Similarly for the output, we have O(log m) accuracy checks,
bringing the total to L × O(m × d) accuracy checks. For
ViTB-16, the largest layers are 768 × 3072, and there are
approximately 50 linear layers. This means that we perform
∼ 1000 valiation accuracy checks for this network. It took us
7.5 hours on a machine with 8 A100 GPUs to calculate the
utilized rank of all layers via this binary search.

ViTB-16 With Different Accuracy Drop Tolerance, ϵ
In Table 2, we present the results of analyzing ViTB-16
architecture trained from scratch with varying accuracy drop
tolerance per layer, per transformation. All results correspond
to networks decomposed and finetuned to respect the rank
found from binary search.

Hyperparameters for Finetuning
After performing binary search on all layers of the network,
we decompose each linear and convolutional layer into two
consecutive layers (without non-linearity in between) so



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Orig
Acc(%)

Orig
ALU(%)

Proj
Acc(%) (∆)

True
ALU (%)

Params
Ratio

Flops
Ratio

ViTB16 - scratch 80.9 94 80.7 (-0.2) 35 0.48 0.33
ViTB16, FT, Lin 81.7 97 84.0† 69 0.87 0.74
ViTB16, FT, E2E 85.3 97 85.1 (-0.2) 57 0.79 0.54

Table 3: Results for Utilized Rank Decomposition for ViTB-16 trained with and without self supervised training (Singh et al.
2022) † The increase in accuracy for linear models after finetuning with decomposed layers is an unfair comparison since the
original network only finetuned the linear head.

Architecture
Orig Acc

(%)
Orig ALU

(%)
Acc - Ours

(%) (∆)
True ALU

(%)
Params
Ratio

FLOPs
Ratio

C
IF

A
R

10

VGG11 91.5 98 92.5 (+1.0) 47 0.34 0.60
VGG13 92.9 98 93.5 (+0.6) 47 0.24 0.60
VGG16 93.2 99 93.6 (+0.4) 44 0.18 0.54
VGG19 92.7 99 93.6 (+0.9) 32 0.11 0.38

ResNet18 90.9 95 91.4 (+0.5) 80 0.86 0.92
ResNet50 92.8 96 93.1 (+0.3) 64 0.78 0.78

ResNet101 93.2 96 94.1 (+0.9) 51 0.73 0.64

C
IF

A
R

10
0

VGG11 66.9 99 67.4 (+0.5) 64 0.78 0.72
VGG13 70.2 99 71 (+0.8) 68 0.76 0.77
VGG16 70.2 99 71.4 (+1.2) 62 0.61 0.71
VGG19 70.2 99 71.8 (+1.6) 51 0.38 0.68

ResNet18 66.0 96 67.8 (+1.8) 90 0.98 0.99
ResNet50 71.4 96 73.5 (+2.1) 80 0.93 0.92

ResNet101 72.2 96 73.5 (+1.3) 63 0.87 0.77
WideResNet50_2 81.2 99 80.6 (-0.6) 43 0.68 0.58
WideResNet101_2 82.3 99 81.7 (-0.6) 33 0.51 0.44

Table 4: Results for Intrinsic Rank Decomposition on CIFAR dataset for different architectures. FT refers to finetuning and
Savings refer to ratio of original to decomposed parameters

that we can finetune while preserving the searched rank.
We initialize the two layers to the left and right matrices
arising from SVD on the weight (with either one appropri-
ately scaled by the singular values). We then perform a grid
search on the following parameters for finetuning: learning
rate in 0.0003,0.0001, weight decay in 0.3,0 and EMA (ex-
ponential moving average) decay in 0.85,0.9,0.95 for ViTs.
For ResNets, we test for learning rate in 0.1,0.01,0.001 and
weight decay in 0,0.0001. When we use EMA, we start aver-
aging the model for EMA from the beginning of finetuning.
For all other hyperparameters, we used the same as the base
repository that we took the model from.

Pretraining on ViTB-16

In Table 3, we present the results of analyzing VitB-16 archi-
tecture trained from scratch on ImageNet and finetuned from
a model pretrained in a self-supervised fashion (Singh et al.
2022). All results correspond to networks decomposed and
finetuned to respect the rank found from binary search.

Results for CIFAR Dataset
In Table 4, we show the results for change in accuracy and
average layer utilization, along with the savings in number of
parameters and FLOPs from applying our method to different
networks on the CIFAR10 and CIFAR100 datasets.

References
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. ImageNet: A large-scale hierarchical image
database. 248–255.
Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn,
D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.;
Heigold, G.; Gelly, S.; Uszkoreit, J.; and Houlsby, N. 2021.
An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Deep Residual
Learning for Image Recognition.
Krizhevsky, A.; and Hinton, G. 2009. Learning multiple
layers of features from tiny images. Technical Report 0,
University of Toronto, Toronto, Ontario.



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Liu, Z.; Lin, Y.; Cao, Y.; Hu, H.; Wei, Y.; Zhang, Z.; Lin, S.;
and Guo, B. 2021. Swin Transformer: Hierarchical Vision
Transformer using Shifted Windows.
Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga,
L.; Desmaison, A.; Köpf, A.; Yang, E.; DeVito, Z.; Raison,
M.; Tejani, A.; Chilamkurthy, S.; Steiner, B.; Fang, L.; Bai,
J.; and Chintala, S. 2019. PyTorch: An Imperative Style,
High-Performance Deep Learning Library.
Rasley, J.; Rajbhandari, S.; Ruwase, O.; and He, Y. 2020.
DeepSpeed: System Optimizations Enable Training Deep
Learning Models with Over 100 Billion Parameters. In Pro-
ceedings of the 26th ACM SIGKDD International Confer-
ence on Knowledge Discovery & Data Mining, KDD ’20,
3505–3506. New York, NY, USA: Association for Comput-
ing Machinery. ISBN 9781450379984.
Simonyan, K.; and Zisserman, A. 2015. Very Deep Convolu-
tional Networks for Large-Scale Image Recognition.
Singh, M.; Gustafson, L.; Adcock, A.; de Freitas Reis, V.;
Gedik, B.; Kosaraju, R. P.; Mahajan, D.; Girshick, R.; Dol-
lár, P.; and van der Maaten, L. 2022. Revisiting Weakly
Supervised Pre-Training of Visual Perception Models.
Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles,
A.; and Jégou, H. 2021. Training data-efficient image trans-
formers & distillation through attention.
Wightman, R. 2019. PyTorch Image Models.
Zagoruyko, S.; and Komodakis, N. 2017. Wide Residual
Networks.


