
PREPRINT
VERSION

Do Not
Distribute

PREPRINT
VERSION

Do Not
Distribute

DyESP: Accelerating Hyperparameter-Architecture Search via Dynamic
Exploration and Space Pruning

Xukun Liu1, Haoze Lv2, Fenglong Ma3, Chi Wang4, Dongkuan (DK) Xu5

1Northwestern University
2Southern University of Science and Technology

3The Pennsylvania State University
4Google DeepMind

5North Carolina State University
xukunliu2025@u.northwestern.edu, 11912814@mail.sustech.edu.cn, fenglong@psu.edu, wang.chi@microsoft.com,

dxu27@ncsu.edu

Abstract
In this work, we introduce DyESP, a novel approach that
unites dynamic exploration with space pruning to expedite
the combined search of hyperparameters and architecture,
enhancing the efficiency and accuracy of hyperparameter-
architecture search (HAS). Central to DyESP are two in-
novative components: a meta-scheduler that customizes the
search strategy for varying spaces and a pruner designed to
minimize the hyperparameter space by discarding subopti-
mal configurations. The meta-scheduler leverages historical
data to dynamically refine the search direction, targeting the
most promising areas while minimizing unnecessary explo-
ration. Meanwhile, the pruner employs a surrogate model,
specifically a fine-tuned multilayer perceptron (MLP), to pre-
dict and eliminate inferior configurations based on static met-
rics, thereby streamlining the search and conserving compu-
tational resources. The results from the pruner, which iden-
tifies and removes underperforming configurations, are fed
into the meta-scheduler. This process updates the historical
dataset used by the meta-scheduler, enabling it to adjust the
exploration degree and refine the sampling strategy for subse-
quent iterations. This integration ensures the meta-scheduler
is continually updated with relevant data, allowing for more
accurate and timely adjustments to the exploration strategy.
Experiments on various benchmarks show that DyESP out-
performs existing methods in terms of both speed and stabil-
ity on almost all benchmarks.

Code — https://anonymous.4open.science/r/DyESP-4B28

Introduction
Neural architecture search (NAS) (Zoph and Le 2017;
Elsken, Metzen, and Hutter 2019; Zoph et al. 2018; Liu,
Simonyan, and Yang 2019) and hyperparameter optimiza-
tion (HPO) (Waring, Lindvall, and Umeton 2020; Feurer and
Hutter 2019) are optimization techniques that automate the
design of deep neural networks for downstream tasks. NAS
aims to automatically design optimal neural network archi-
tectures for a given task. The input to NAS typically consists
of a dataset and a defined task (e.g., image classification),
while the output is an optimal or near-optimal neural net-
work architecture customized for the task. Complementarily,

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

 HAS

Architecture
NAS

Hyper Parameter
HPO

Evaluation

Search
Algorithms

Bayesian Optimization
Evolutionary Algorithms

Heuristic Algorithms
...

X

Results

Wang,

Figure 1: Illustration of HAS pipeline.

HPO aims to find the best set of hyperparameters (settings
or configurations) for a given model to maximize its perfor-
mance on a specific task. The input to HPO is the range of
possible hyperparameter values for a given model, and the
output is the set of hyperparameter values that result in the
best performance of the model, typically measured by accu-
racy, F1 score, or another relevant metric.

As shown in Fig. 1, joint hyperparameter and architec-
ture search (HAS) aims to simultaneously optimize both the
architecture of a neural network and its hyperparameters to
find the best-performing model for a given task (Dong et al.
2020; Wang et al. 2022). The input to HAS typically in-
cludes the inputs of NAS and HPO, i.e., a dataset and a broad
definition of possible neural network architectures and hy-
perparameter ranges. The output is the optimal neural net-
work architecture along with its best set of hyperparame-
ters, tailored to maximize performance on the specific task.
HAS addresses the limitations of biased searching and unfair
evaluation, prevalent in separate NAS and HPO approaches,
by integrating the search spaces and evaluation processes.
Consequently, HAS provides a more holistic and efficient
exploration of the model configuration space, leading to bet-
ter overall performance and more reliable comparisons be-
tween different models, and has been applied to various real-
world tasks, such as medical image analysis (Prezja et al.
2023), tabular data modeling (Das and Dooley 2023), and
deep learning workloads optimization (Nagrecha and Kumar
2023).

However, existing HAS approaches face the challenge
of high computational costs, especially in the search
part (Falkner, Klein, and Hutter 2018; Holland 2012; Hut-
ter, Hoos, and Leyton-Brown 2011). The main reason for

PREPRINT
VERSION

Do Not
Distribute

PREPRINT
VERSION

Do Not
Distribute

the high computational cost is the vast and complex search
space. Compared to NAS, which only searches the param-
eters of the model structure, the search space of HAS is
not only larger due to the inclusion of the search for hy-
perparameters (Bansal et al. 2022; Hirose, Yoshinari, and
Shirakawa 2021; Dai et al. 2021), but also contains a more
complex mix of searches for discrete and continuous vari-
ables, which ultimately leads to an increase of one or even
two orders of magnitude in the search space.

In this work, we propose a dynamic exploration and space
pruning method, called DyESP, to accelerate the joint search
of hyperparameter and architecture. DyESP mainly consists
of two novel designs, the meta-learning-based scheduler
(meta-scheduler) for accelerating search and a pruner for
reducing the hyperparameter space. In particular, the meta-
scheduler adapts the search strategy to different spaces, im-
proving the efficiency of finding optimal configurations. It
utilizes meta-learning principles to dynamically adjust the
exploration degree, enabling a flexible and efficient search
process. This unique approach allows the scheduler to learn
from past searches, thereby optimizing the search strategy
across various domains. The pruner is designed to acceler-
ate HAS by effectively narrowing down the search space,
and eliminating less promising configurations early on. It
achieves this by utilizing a surrogate model approach, pre-
dicting the performance of different configurations based on
static metrics, thus streamlining the evaluation process. This
reduces the computational resources required for extensive
evaluations, focusing efforts on more viable candidates. As
a result, DyESP integrates the results from the pruner into
the meta-scheduler through a structured, iterative process.
After generating candidate configurations from the architec-
tural and hyperparameter spaces, these are quickly evaluated
for performance metrics such as the number of parameters
and latency. The pruner then identifies and removes under-
performing configurations. These actions culminate in up-
dating the historical data set, which the meta-scheduler uti-
lizes to adjust the exploration degree and refine the sampling
strategy for subsequent iterations. This systematic integra-
tion ensures that the meta-scheduler operates with updated,
pruned data, leading to a more focused and efficient search
process.

Our main contributions can be summarized as follows:

• We propose a novel dynamic exploration strategy that
leverages meta-learning. This strategy dynamically ad-
justs the search process based on learned patterns from
previous searches, enhancing the efficiency of finding
optimal solutions. The detailed design includes a meta-
learning algorithm that continuously updates the explo-
ration parameters, enabling the system to adapt its search
strategy in real time to different search spaces and condi-
tions, thus accelerating the hyperparameter and architec-
ture search.

• We introduce a new space pruning technique that effec-
tively reduces the search space by identifying and elim-
inating less promising paths in the search process. This
approach significantly decreases the computational re-
sources required. The detailed design involves a data-

driven model that evaluates the potential of different
search paths using historical data, which allows for a
more focused and efficient search by concentrating on
areas with higher potential for improvement. In addi-
tion, we propose the integration of a feedback loop be-
tween the meta-scheduler and the pruner, which enables
the meta-scheduler to fine-tune its strategy based on the
effectiveness of the pruning decisions, leading to a more
synchronized and intelligent search.

• Extensive experiments across various benchmarks show
the superior performance of DyESP over existing meth-
ods in terms of both efficiency and effectiveness, demon-
strating its adaptability and robustness across different
types of search spaces and optimization problems, high-
lighting the practicality and versatility in real-world sce-
narios. On NAS-Hpo-Bench-II (Hirose, Yoshinari, and
Shirakawa 2021), DyESP achieves the optimal result
with only 20% of the evaluation times required by
the existing best-performing method. On NASBench-
ASR(Mehrotra et al. 2021), NASBench-101(Ying et al.
2019), NASBench-Macro(Su et al. 2021), DyESP re-
quires only 20%, 10.6%, 10% of the evaluation times of
the optimal methods.

Methodology
DyESP is described in Fig. 2. It contains two components:
meta-scheduler and pruner. The meta-scheduler dynamically
adjusts the search range. The pruner, on the other hand, is
employed to filter out poorly performing configurations be-
fore evaluation, thereby reducing the expensive cost of eval-
uation.

Preliminary
Stages of Search Algorithm. In the domain of NAS and
HAS, the methodology of search algorithms is divided into
two stages: global search and local search. Global search
emphasizes a wide-ranging exploration aimed at identifying
promising regions within the search space, and local search
narrows the focus to a smaller area, meticulously optimizing
configurations within this confined space. Existing research
supports the efficacy of local search, particularly when ad-
vantageous initial points are predetermined (Dai et al. 2021).

Characteristics of Search Space. To explore the reasons
behind these outcomes, we visualize multiple search spaces
for both HAS and NAS, including areas such as computer vi-
sion (Ying et al. 2019) (Dong and Yang 2020), graphs (Qin
et al. 2022), and other domains. The findings show: 1) The
architectural landscape of HAS is a complex, multi-peaked
domain, significantly marked by a high prevalence of lo-
cal optima. 2) High-performing model architectures tend to
cluster, suggesting a pattern of local regularity within the
search space. These observations of global complexity and
local regularity within the search spaces effectively under-
score the reasons behind the superior performance of local
search.

Exploration Degree. To quantitatively analyze the
search types, we introduce the variable M as exploration de-

PREPRINT
VERSION

Do Not
Distribute

PREPRINT
VERSION

Do Not
Distribute

Architecture
Space

Operators
Kernel Size

Hidden Dimension
Embedding Dimension

...

Hyper Parameter
Space

Learning Rate
Batch Size

...

Seach Space

Seach Algorithm

1 0 1 0 0

Reward History

...

Meta-Scheduler

Exploration Degree

HyperParameter

Architecture

Configuration

Fast Evaulation

Metric: Flops,
Model Size, etc

Hyperparameter Pruner

Threshold

Score

Model

Train/Test

Reward

DyESP Framework Evaluation

Whether real
Evaluation

Figure 2: Overview of DyESP. DyESP incorporates a meta-controller and a hyperparameter pruner. First, the meta-scheduler
guides the search algorithm in identifying promising configurations for models. Then, these configurations undergo a rapid
evaluation. Finally, the most effective configurations are subjected to comprehensive evaluation through training and testing,
which feeds back into the meta-scheduler to further improve the search strategy.

gree, which is defined in Eq. (1).

M =
1

dim

dim∑
i=1

|∆Di|
Ri

, (1)

where ∆Di denotes the variation in the ith dimension, Ri is
the range of values in the ith dimension, and dim represents
the number of dimensions in the search space. Consequently,
M serves as a quantifier of exploration degree throughout
the search process, reflecting the extent to which the algo-
rithm explores the search space. A high value of M suggests
that the algorithm is engaging in global search, whereas a
low value indicates a focus on local search.

Motivation: No Optimal Static Strategy! To maximize
the effect of local search, the exploration degree should
gradually decrease as the number of trials increases. Fig. 3
illustrates the relationship between different exploration de-
gree trajectories and the final outcomes across various search
spaces. Darker shades within the figure correlate with better
results. Notably, NASBench101 appears to favor a balanced
approach between exploration and exploitation, whereas
NASBench201 shows poor performance under uniform dis-
tribution of these elements. This discrepancy clearly indi-
cates that different search spaces have distinct preferences
for search strategies, and consequently, a static search curve
is not universally applicable. The findings underscore the ne-
cessity of an adaptive strategy, one that is capable of mod-
ulating its exploration degree in response to the evolving
needs of the search space it operates within.

Meta-Scheduler: Enable efficient search in
complex search space
To make the search algorithm adaptable to different search
spaces, we propose a search strategy grounded in meta-
learning, adaptable to any search space. This approach is de-
signed to dynamically adjust the exploration degree, main-
taining flexibility and efficiency in exploring through diverse
search spaces.

Details of Meta-Scheduler. The Meta-Scheduler is a
three-layer multilayer perceptron (MLP) structure to dynam-

ically adjust the exploration of search algorithm. Specifi-
cally, it uses the history result H of the search algorithm
shown in Eq. (2) as input to predict the exploratory degree
for the current stage:

Hi =
{
1 if F(αi) > F(αi−1),
0 otherwise, (2)

where F is the metric to be optimized such as accuracy,
FLOPs, etc., αi is the model configuration obtained from
the i-th search, and Hi is the performance score from the
i-th search. Meta-scheduler fθ can be expressed as Eq. (3).

Mi+1 = fθ({Hi−k, Hi−k+1, ..., Hi}), (3)

where k controls the length of history considered and Mi+1

is the exploratory degree for the next search. By controlling
the exploration degree based on historical results, the meta-
scheduler can adapt the search strategy to different search
spaces.

The optimization problem for search can be formulated as
Eq. (4).

α∗ = argmax
α∈Ω

F (w∗(α), α) , (4)

where α represents the model configuration, which includes
the architecture A and hyperparameter h, Ω denotes the
search space, and w∗ indicates the optimal weights for a
specific configuration α. After introducing a meta-scheduler,
the optimization problem is reformulated as Eq. (5).

α∗ = arg max
α∈P(Ω;fθ)

F(w∗(α), α), (5)

where fθ denotes the meta-scheduler and P represents
the configurations found in the search space Ω under the
guidance of the search strategy implemented by the meta-
scheduler fθ.

Traing of Meta-Scheduler. To ensure that this sched-
uler improves performance across different search spaces,
we employ meta-learning to train the scheduler, aiming to
extract common knowledge from different spaces. The train-
ing process is described by Eq. (6).

θ∗ = argmin
θ

∑
Ωi∈Ωsupport

L(θ,Ωi), (6)

PREPRINT
VERSION

Do Not
Distribute

PREPRINT
VERSION

Do Not
Distribute

(a) NB101

0 20 40 60 80 100
Number of trials

0.2

0.4

0.6

0.8

1.0

Ex
pl

or
at

io
n

de
gr

ee

(b) NB201

0 20 40 60 80 100
Number of trials

0.2

0.4

0.6

0.8

1.0

Ex
pl

or
at

io
n

de
gr

ee

(c) NB-HPO-II

0 20 40 60 80 100
Number of trials

0.2

0.4

0.6

0.8

1.0

Ex
pl

or
at

io
n

de
gr

ee

Figure 3: Best search curve in different spaces. Darker shades represent the curves that yield better final results. The result
indicates that different search spaces have varying preferences for search types, and a fixed search curve can not be optimal for
all spaces. Therefore, it is essential to have an adaptive strategy.

where θ∗ represents the optimal parameters of the meta-
scheduler, Ωsupport represents the search spaces used for
training the scheduler, and L(θ,Ωi) denotes the loss in-
curred by the search algorithm when employing the search
strategy f(θ) within the training search space Ωi. To train
this network, we define the loss function as Eq. (7).

L(θ,Ωi) =

K∑
k=1

max(0, R(θ, αk
i))−R(θbesti , αk

i) · (θbesti − θ), (7)

where K is the current number of search iterations, θbesti
is the best search strategy currently known for the training
search space Ωi, and αk

i is the configuration found in k-th
search from the training search space Ωi. The reward func-
tion R(θ, αk

i) measures the performance of the result ob-
tained through searching under the k-th configuration αk

i of
the training search space Ωi, given the current search strat-
egy f(θ). Since the search curve is static and does not allow
for dynamic adjustments based on historical information,
simply emulating this curve is insufficient for achieving fur-
ther improvements. Therefore, we dynamically update the
value of θbest during later stages of training when improve-
ments are detected, actively encouraging the model to learn
from θbest.

Hyperparameter Pruner: Reduce vast search space
Considering the space complexity, training surrogate mod-
els to predict performance based on model architectures is
costly. However, as neural network training typically in-
volves a limited set of hyperparameters, constructing a uni-
fied surrogate model focusing on hyperparameter evalua-
tion is more practical. Specifically, The pruner uses low-cost
metrics, such as model size and FLOPs, obtained statically
or as by-products during evaluation, along with the hyper-
parameters as inputs. The output of the pruner is a score for
the input hyperparameter. This design ensures that the in-
puts to the pruner do not require costly training or extraction
processes, thus not compromising the overall execution effi-
ciency.

Due to the significant differences between search spaces,
our pruner needs to be fine-tuned for specific search spaces
during the search process. Notably, the pruner only seeks
potential training data among the configurations that have
been searched, thereby incurring no additional overhead

from data collection. Moreover, due to the simplicity of the
surrogate network used—a mere 3-layer MLP suffices—its
training time is negligible compared to the costly evaluation
overhead.

We train the pruner using a ranking loss and employ mean
squared error (MSE) to ensure that the predicted values are
not excessively divergent from the actual values. The loss
function is given by Eq. (8).

L(A, hi, hj) = max(0,−ŷij · yij) + λ(ŷij − yij)
2, (8)

where A represents the configuration’s structure. hi and hj

represent the two sets of hyperparameters to be compared.
ŷij is the performance gap predicted by the pruner, yij is the
actual performance gap, and λ is used to balance the propor-
tion of the two types of loss.

Experiments
Experimental Setup
Benchmarks. We conduct experiments on several NAS and
HAS benchmarks: NASBenchGraph (Qin et al. 2022), NAS-
HPO-Bench-II (Hirose, Yoshinari, and Shirakawa 2021),
JHAS-Bench-201 (Bansal et al. 2022), NASBench101 (Ying
et al. 2019), NASBench201, NASBenchMacro (Su et al.
2021) and NASBenchASR (Mehrotra et al. 2021). These
benchmarks are chosen to cover a broad range of neural
network architectures and downstream tasks. Since these
benchmarks pose different levels of challenges to NAS, we
group them into 5 distinct difficulty levels, which are influ-
enced by the search space and baseline performance, and
specific values can be found in Table 1.

Level 1: The deviation from the optimal value is limited to
3%. Level 2: The deviation from the optimal value is limited
to 2%, and slightly better than level 1. Level 3: The devia-
tion from the optimal value is limited to 1%. Level 4: The
deviation from the optimal value is limited to 0.5%. Level
5: The best result attainable by DyESP within 4000 trials.

Baselines. We include 6 representative search algorithms
as baselines, including Random Search (RS) (Bergstra
and Bengio 2012), Bayesian Optimization with hyperband
(BOHB) (Falkner, Klein, and Hutter 2018), Reinforcement
Learning (RL) (Zoph and Le 2017), Genetic Algorithm
(GA) (Holland 2012), Differential Evolution (DE) (Storn
and Price 1997), and Cost-Frugal Optimization (CFO) (Wu,

PREPRINT
VERSION

Do Not
Distribute

PREPRINT
VERSION

Do Not
Distribute

Benchmark Level 1 Level 2 Level 3 Level 4 Level 5
NASBench101 92.77% 93.11% 93.37% 93.81% 94.18%
NASBench201 92.94% 93.30% 93.62% 94.17% 94.37%
NASBenchASR 87.00% 88.00% 89.00% 90.00% 90.50%

NASBenchMacro 92.80% 92.90% 93.00% 93.10% 93.12%
NASBenchGraph 80.00% 80.40% 80.60% 81.00% 81.60%

NATS 92.80% 92.90% 93.00% 93.10% 93.65%
Colorectal Histology1 94.80% 95.00% 95.50% 96.00% 96.20%

Fashion MNIST1 94.00% 94.30% 94.80% 95.00% 95.30%
Cifar-101 90.50% 90.80% 91.00% 91.50% 91.80%

1 Datasets from JHAS-Bench-201.

Table 1: Specific Values for Difficulty Levels.

Wang, and Huang 2021). To minimize randomness, all these
algorithms are repeated 51 times using different random
seeds. The median performance from these executions is se-
lected for evaluation purposes.

Efficiency Comparison with Baselines
To probe the efficiency of DyESP, we evaluate the num-
ber of trials required to achieve different performance lev-
els. For HAS tasks, Table 3 demonstrates the comparative
outcomes of DyESP and baselines across various datasets
within JHAS-Bench-201. DyESP leads the pack in almost
all datasets, notably on the fashion MNIST dataset, where
it surpasses the baseline results by a large margin, e.g.,
the baseline fails to reach the same level even after 5000
searches where the DyESP achieved with only 278 search
trials. As depicted in Table 2, the advantage of DyESP is
even more pronounced in NAS benchmarks. Specifically, on
NASBench201, GA fails to discover a configuration as op-
timal as that found by DyESP within just 80 trials, despite
undertaking 400 exploratory steps. Similarly, on NAS-HPO-
Bench-II, BOHB requires nearly 10 times the resources to
achieve a comparable outcome to that of DyESP. Experi-
mental analyses across prominent benchmarks indicate that
DyESP exhibits at least 2-fold improvement over all base-
lines within the search spaces explored.

These empirical results underscore the potential of
DyESP across various benchmarks, owing to the implemen-
tation of the mete scheduler. As a result, DyESP is capable
of exploring the search space with greater efficiency and pre-
cision compared to traditional algorithms that are dependent
on heuristic or random searches. The validation of this su-
periority holds considerable significance for HAS tasks and
other relevant domains. In the context of HAS tasks, DyESP
offers an efficient and precise solution for the discovery of
highly accurate models, thereby significantly reducing com-
pute costs and enhancing search scalability.

Effect of the Proposed Pruner
We then verify the effectiveness of the proposed pruner
on NAS-HPO-Bench-II. The results demonstrate that the
pruner significantly reduces the number of search trials,
thereby accelerating the search process. Specifically, com-
pared to Random Search, BOHB, GA, and DE, our method
achieves the highest acceleration, reducing the required tri-
als from hundreds to only 41. Furthermore, integrating the

pruner into our approach further decreases the trial count
to 37, achieving an acceleration factor of 9.0× compared to
Random Search.

Related Work
Neural Architecture Search (NAS). NAS was first pro-
posed by (Kitano 1990) in 1990, and (Zoph and Le 2017)
in 2016 made it popular again, which models the NAS prob-
lem as a black-box optimization problem (Elsken, Metzen,
and Hutter 2019). For this problem, the quest to effectively
traverse the vast search space has inspired researchers to em-
ploy a diverse assortment of strategies, such as evolution-
ary algorithms (Real et al. 2019), reinforcement learning ap-
proaches (Zoph et al. 2018), (Liu et al. 2018), and Bayesian
optimization (Kandasamy et al. 2018), (White, Neiswanger,
and Savani 2021). Since the above NAS methods usually
need huge computing resources, researchers have again used
several means to reduce the cost, such as gradient-based
optimization (Liu, Simonyan, and Yang 2019), (Xu et al.
2020), (Fang et al. 2020), one-shot method, (Stamoulis et al.
2019), (Guo et al. 2020), etc. However, these approaches
mainly focus on model architecture and neglect the impor-
tant role of training hyperparameters, which can uninten-
tionally distort the evaluation and introduce some bias.

Hyper-Parameter Optimization (HPO). HPO is a long-
established machine learning technique for automatically
finding the most appropriate parameter settings for a model,
thereby improving its performance and efficiency (War-
ing, Lindvall, and Umeton 2020). Classical methods in this
field include Bayesian optimization (Snoek, Larochelle, and
Adams 2012), (Brochu, Cora, and de Freitas 2010), Ran-
dom search (Bergstra and Bengio 2012), Gaussian process
(Seeger 2004) gradient-based methods (Franceschi et al.
2017), etc. However, most methods used for HPO problems
are designed to address issues within continuous spaces.
When confronted with problems that combine both continu-
ous and discrete spaces, these methods do not perform.

Joint Hyperparameter and Architecture Search
(HAS). Early work in HAS can be traced back to 2016,
(Mendoza et al. 2016) using the SMAC (Hutter, Hoos, and
Leyton-Brown 2011) method to search for MLP structures
and training hyperparameters. (Zela et al. 2018) highlighted
the importance of HAS by demonstrating that the same
hyperparameters do not apply to models with different
structures. At this stage, HAS research is mainly divided
into four directions: (1) Improvement based on traditional
HPO methods: Research in this direction, including (Tiao
et al. 2020) and (Zimmer, Lindauer, and Hutter 2021),
focuses on exploring HAS search using BOHB (Falkner,
Klein, and Hutter 2018) and its improvement.(Egele et al.
2021) using SMAC(Hutter, Hoos, and Leyton-Brown 2011)
to find neural networks for solving Tabular Data. However,
these methods based on Hyperparameter Optimization
(HPO) often do not make specific improvements for the
HAO search space, resulting in lower search efficiency com-
pared to our algorithm. (2) Using heuristics: Approaches
such as (Dai et al. 2021) combine traditional heuristics
with agent models to search the complex HAS search space
and achieve good performance on ImageNet. (3) Using

PREPRINT
VERSION

Do Not
Distribute

PREPRINT
VERSION

Do Not
Distribute

Benchmark Task Size Method Level 1 Level 2 Level 3 Level 4 Level 5 Acceleration

NASBench101 Vision 423k

Random Search 5 11 36 1100 4225 x1.0
BOHB 3 5 25 380 914 x4.6

GA 4 4 17 959 5000+ x0.8
DE 4 4 25 261 2172 x1.9

Ours 12 19 28 140 432 x9.8

NASBench201 Vision 15.6k

Random Search 15 26 729 5000+ 5000+ x1.0
BOHB 5 21 57 281 525 x9.5+

GA 8 18 51 233 518 x9.7+
DE 8 21 32 130 178 x28.1+

Ours 10 15 28 52 70 x71.4+

NASBenchASR ASR 8.2k

Random Search 132 198 214 424 5000+ x1.0
BOHB 162 182 239 328 5000+ x1.0

GA 440 604 4395 5000+ 5000+ x1.0
DE 63 85 92 107 5000+ x1.0

Ours 37 71 104 169 534 x9.4+

NASBenchMacro Vision 6.5k

Random Search 56 179 419 1851 2128 x1.0
BOHB 44 61 94 261 425 x5.0

GA 72 166 258 827 5000+ x0.4
DE 32 42 56 63 5000+ x0.4

Ours 17 22 24 57 87 x24.5

NASBenchGraph Graph 26.2k

Random Search 21 76 137 588 2808 x2.0
BOHB 24 83 107 1037 5000+ x0.6

GA 35 404 463 5000+ 5000+ x0.6
DE 40 138 191 5000+ 5000+ x0.6

Ours 12 23 40 137 1409 x2.0

NATS Vision 32.7k

Random Search 18 18 38 113 5000+ x1.0
BOHB 35 40 61 134 5000+ x1.0

GA 18 25 34 49 5000+ x1.0
DE 21 23 32 46 150 x33.3+

Ours 10 10 10 11 124 x40.3+

Table 2: Performance comparison of DyESP and baselines on NAS benchmarks. DyESP consistently outperforms baselines
across all NAS benchmarks, achieving better results while reducing computational costs.

Dataset Method Level 1 Level 2 Level 3 Level 4 Level 5 Acceleration

cifar10

Random Search 1018 2817 5000+ 5000+ 5000+ x1.0
BOHB 5000+ 5000+ 5000+ 5000+ 5000+ x1.0

GA 989 1195 1584 2344 3628 x1.4+
DE 5000+ 5000+ 5000+ 5000+ 5000+ x1.0

Ours 240 336 419 1293 3701 x1.4+

fashion mnist

Random Search 14 25 146 465+ 5000+ x1.0
BOHB 445 21 804 5000+ 5000+ x1.0

GA 266 357 745 1264 5000+ x1.0
DE 55 75 173 5000+ 5000+ x1.0

Ours 16 20 34 53 278 x18.0+

colorectal histology

Random Search 73 138 589 5000+ 5000+ x1.0
BOHB 2253 5000+ 5000+ 5000+ 5000+ x1.0

GA 724 989 2065 5000+ 5000+ x1.0
DE 5000+ 5000+ 5000+ 5000+ 5000+ x1.0

Ours 70 76 124 483 2093 x2.4+

Table 3: Performance comparison of DyESP and baselines
on JHAS-Bench-201. DyESP consistently outperforms tra-
ditional methods across all HAS benchmarks, achieving bet-
ter results while reducing computational costs.

neural networks: (Dong et al. 2020) and (Wu et al. 2022)
explore the HAS problem using neural networks like GCNs
with some success. However, these neural network-based
methods often lack transferability due to the differences
in search spaces. (4) Benchmark: (Hirose, Yoshinari, and
Shirakawa 2021) and (Bansal et al. 2022) have proposed
HAS benchmarks, with the latter being the largest HAS
benchmark to date. And (Klein and Hutter 2019) compares
the performance of some classical HPO algorithms. As
mentioned previously, existing HAS research mainly adapts
HPO methods, yielding unsatisfactory performance and
lacking generalization capabilities. Our work introduces
a novel, generalized search method that controls the

exploration degree and leverages prior search results for
performance improvement.

Conclusions & Discussion
This paper introduces DyESP, a novel approach designed to
expedite the joint hyperparameter and architecture search.
At its core, DyESP employs a meta-learning-based sched-
uler alongside a versatile pruner to enhance search re-
sult quality while reducing search expenses. The scheduler
adeptly navigates the search towards the most promising ar-
eas within the space, whereas the generic pruner streamlines
this process by eliminating less promising hyperparameter
candidates. A critical observation from our study is the iden-
tification of shared characteristics and variances between the
NAS and HPO domains. This insight underscores the poten-
tial of meta-learning in refining traditional NAS techniques,
presenting a valuable direction for future investigations.

Our experiments illustrate meta-learning’s potential for
dynamic search parameter tuning, However, the relatively
simple structure of the meta-learning model used here can
be further refined to enhance its performance. The design of
such a meta-learning model for search algorithms presents a
promising research direction (Hospedales et al. 2022). Ad-
ditionally, we acknowledge the necessity of incorporating
more information into our algorithm’s generic pruner, which
currently relies on limited data to determine candidates to re-
tain or discard. By integrating additional information, such
as the computation graph (Looks et al. 2017) of each can-
didate, the pruner could be more effective at shrinking the

PREPRINT
VERSION

Do Not
Distribute

PREPRINT
VERSION

Do Not
Distribute

search space and boosting the search process’s efficiency.

Acknowledgments
This work was partially supported by the National Science
Foundation (NSF) grants BCS-2416846 and OAC-2417850.
The views and conclusions are those of the authors and
should not be interpreted as representing the official policies
of the funding agencies or the government.

References
Bansal, A.; Stoll, D.; Janowski, M.; Zela, A.; and Hutter,
F. 2022. JAHS-Bench-201: A Foundation For Research On
Joint Architecture And Hyperparameter Search. In Thirty-
sixth Conference on Neural Information Processing Systems
Datasets and Benchmarks Track.
Bergstra, J.; and Bengio, Y. 2012. Random Search for
Hyper-Parameter Optimization. J. Mach. Learn. Res., 13:
281–305.
Brochu, E.; Cora, V. M.; and de Freitas, N. 2010. A Tuto-
rial on Bayesian Optimization of Expensive Cost Functions,
with Application to Active User Modeling and Hierarchical
Reinforcement Learning. CoRR, abs/1012.2599.
Dai, X.; Wan, A.; Zhang, P.; Wu, B.; He, Z.; Wei, Z.; Chen,
K.; Tian, Y.; Yu, M.; Vajda, P.; and Gonzalez, J. E. 2021.
FBNetV3: Joint Architecture-Recipe Search Using Predic-
tor Pretraining. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, CVPR’2021, vir-
tual, June 19-25, 2021.
Das, R.; and Dooley, S. 2023. Fairer and More Ac-
curate Tabular Models Through NAS. arXiv preprint
arXiv:2310.12145.
Dong, X.; Tan, M.; Yu, A. W.; Peng, D.; Gabrys, B.; and Le,
Q. V. 2020. AutoHAS: Differentiable Hyper-parameter and
Architecture Search. CoRR, abs/2006.03656.
Dong, X.; and Yang, Y. 2020. NAS-Bench-201: Extend-
ing the Scope of Reproducible Neural Architecture Search.
CoRR, abs/2001.00326.
Egele, R.; Balaprakash, P.; Guyon, I.; Vishwanath, V.; Xia,
F.; Stevens, R.; and Liu, Z. 2021. AgEBO-tabular: joint neu-
ral architecture and hyperparameter search with autotuned
data-parallel training for tabular data. In Proceedings of the
International Conference for High Performance Computing,
Networking, Storage and Analysis, 1–14.
Elsken, T.; Metzen, J. H.; and Hutter, F. 2019. Neural Archi-
tecture Search: A Survey. J. Mach. Learn. Res., 20: 55:1–
55:21.
Falkner, S.; Klein, A.; and Hutter, F. 2018. BOHB: Robust
and Efficient Hyperparameter Optimization at Scale. In Dy,
J. G.; and Krause, A., eds., Proceedings of the 35th Interna-
tional Conference on Machine Learning, ICML’2018, Stock-
holmsmässan, Stockholm, Sweden, July 10-15, 2018.
Fang, J.; Sun, Y.; Zhang, Q.; Li, Y.; Liu, W.; and Wang,
X. 2020. Densely Connected Search Space for More Flex-
ible Neural Architecture Search. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, CVPR’2020, Seattle, WA, USA, June 13-19,
2020.

Feurer, M.; and Hutter, F. 2019. Hyperparameter Optimiza-
tion. In Hutter, F.; Kotthoff, L.; and Vanschoren, J., eds., Au-
tomated Machine Learning - Methods, Systems, Challenges,
The Springer Series on Challenges in Machine Learning, 3–
33.
Franceschi, L.; Donini, M.; Frasconi, P.; and Pontil, M.
2017. Forward and Reverse Gradient-Based Hyperparam-
eter Optimization. In Precup, D.; and Teh, Y. W., eds., Pro-
ceedings of the 34th International Conference on Machine
Learning, ICML’2017, Sydney, NSW, Australia, 6-11 August
2017.
Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.; Wei, Y.;
and Sun, J. 2020. Single Path One-Shot Neural Architecture
Search with Uniform Sampling. In Vedaldi, A.; Bischof, H.;
Brox, T.; and Frahm, J., eds., Proceedings of the Computer
Vision - ECCV’2020 - 16th European Conference, Glasgow,
UK, August 23-28, 2020, volume 12361 of Lecture Notes in
Computer Science, 544–560.
Hirose, Y.; Yoshinari, N.; and Shirakawa, S. 2021. NAS-
HPO-Bench-II: A Benchmark Dataset on Joint Optimization
of ConvolutionalNeural Network Architecture and Training
Hyperparameters. In Balasubramanian, V. N.; and Tsang,
I. W., eds., Proceedings of the Asian Conference on Ma-
chine Learning, ACML’2021, 17-19 November 2021, Virtual
Event,.
Holland, J. H. 2012. Genetic algorithms. Scholarpedia,
7(12): 1482.
Hospedales, T.; Antoniou, A.; Micaelli, P.; and Storkey, A.
2022. Meta-Learning in Neural Networks: A Survey. IEEE
Transactions on Pattern Analysis and Machine Intelligence,
44(9): 5149–5169.
Hutter, F.; Hoos, H. H.; and Leyton-Brown, K. 2011. Se-
quential Model-Based Optimization for General Algorithm
Configuration. In Coello, C. A. C., ed., Proceedings of the
Learning and Intelligent Optimization - 5th International
Conference, LION’5, Rome, Italy, January 17-21, 2011. Se-
lected Papers.
Kandasamy, K.; Neiswanger, W.; Schneider, J.; Póczos, B.;
and Xing, E. P. 2018. Neural Architecture Search with
Bayesian Optimisation and Optimal Transport. In Ben-
gio, S.; Wallach, H. M.; Larochelle, H.; Grauman, K.;
Cesa-Bianchi, N.; and Garnett, R., eds., Proceedings of the
31st Annual Conference on Neural Information Process-
ing Systems, NeurIPS’2018, December 3-8, 2018, Montréal,
Canada.
Kitano, H. 1990. Designing neural networks using genetic
algorithms with graph generation system. Complex System,
4(4): 461–476.
Klein, A.; and Hutter, F. 2019. Tabular benchmarks for
joint architecture and hyperparameter optimization. arXiv
preprint arXiv:1905.04970.
Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua, W.; Li,
L.; Fei-Fei, L.; Yuille, A. L.; Huang, J.; and Murphy, K.
2018. Progressive Neural Architecture Search. In Ferrari,
V.; Hebert, M.; Sminchisescu, C.; and Weiss, Y., eds., Com-
puter Vision - ECCV 2018 - 15th European Conference, Mu-
nich, Germany, September 8-14, 2018.

PREPRINT
VERSION

Do Not
Distribute

PREPRINT
VERSION

Do Not
Distribute

Liu, H.; Simonyan, K.; and Yang, Y. 2019. DARTS: Dif-
ferentiable Architecture Search. In Proceedings of the
7th International Conference on Learning Representations,
ICLR’2019, New Orleans, LA, USA, May 6-9, 2019.
Looks, M.; Herreshoff, M.; Hutchins, D.; and Norvig, P.
2017. Deep Learning with Dynamic Computation Graphs.
arXiv:1702.02181.
Mehrotra, A.; Ramos, A. G. C. P.; Bhattacharya, S.;
Dudziak, Ł.; Vipperla, R.; Chau, T.; Abdelfattah, M. S.; Ish-
tiaq, S.; and Lane, N. D. 2021. {NAS}-Bench-{ASR}: Re-
producible Neural Architecture Search for Speech Recogni-
tion. In International Conference on Learning Representa-
tions.
Mendoza, H.; Klein, A.; Feurer, M.; Springenberg, J. T.; and
Hutter, F. 2016. Towards Automatically-Tuned Neural Net-
works. In Hutter, F.; Kotthoff, L.; and Vanschoren, J., eds.,
Proceedings of the 33rd International Conference on Ma-
chine Learning, ICML’2016, New York City, NY, USA.
Nagrecha, K.; and Kumar, A. 2023. Saturn: An Optimized
Data System for Multi-Large-Model Deep Learning Work-
loads (Information System Architectures).
Prezja, F.; Annala, L.; Kiiskinen, S.; Lahtinen, S.; and
Ojala, T. 2023. Adaptive variance thresholding: A novel
approach to improve existing deep transfer vision models
and advance automatic knee-joint osteoarthritis classifica-
tion. arXiv preprint arXiv:2311.05799.
Qin, Y.; Zhang, Z.; Wang, X.; Zhang, Z.; and Zhu, W. 2022.
NAS-Bench-Graph: Benchmarking Graph Neural Architec-
ture Search. arXiv:2206.09166.
Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V. 2019. Reg-
ularized Evolution for Image Classifier Architecture Search.
In Proceedings of the 33rd AAAI Conference on Artificial In-
telligence, AAAI’2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019.
Seeger, M. W. 2004. Gaussian Processes For Machine
Learning. Int. J. Neural Syst., 14(2): 69–106.
Snoek, J.; Larochelle, H.; and Adams, R. P. 2012. Practical
Bayesian Optimization of Machine Learning Algorithms. In
Bartlett, P. L.; Pereira, F. C. N.; Burges, C. J. C.; Bottou,
L.; and Weinberger, K. Q., eds., Proceedings of the 26th An-
nual Conference on Neural Information Processing Systems
NeurIPS’2012, Lake Tahoe, Nevada, United States, Decem-
ber 3-6, 2012,.
Stamoulis, D.; Ding, R.; Wang, D.; Lymberopoulos, D.;
Priyantha, B.; Liu, J.; and Marculescu, D. 2019. Single-Path
NAS: Designing Hardware-Efficient ConvNets in Less Than
4 Hours. In Brefeld, U.; Fromont, É.; Hotho, A.; Knobbe,
A. J.; Maathuis, M. H.; and Robardet, C., eds., Proceed-
ings of the Machine Learning and Knowledge Discovery
in Databases - European Conference, ECML PKDD’2019,
Würzburg, Germany, September 16-20, 2019, Proceedings,
Part II.
Storn, R.; and Price, K. V. 1997. Differential Evolution –
A Simple and Efficient Heuristic for global Optimization
over Continuous Spaces. Journal of Global Optimization,
11: 341–359.

Su, X.; Huang, T.; Li, Y.; You, S.; Wang, F.; Qian, C.; Zhang,
C.; and Xu, C. 2021. Prioritized Architecture Sampling with
Monto-Carlo Tree Search. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
10968–10977.
Tiao, L. C.; Klein, A.; Archambeau, C.; and Seeger, M. W.
2020. Model-based Asynchronous Hyperparameter Opti-
mization. CoRR, abs/2003.10865.
Wang, Y.-Q.; Li, J.-Y.; Chen, C.-H.; Zhang, J.; and Zhan,
Z.-H. 2022. Scale adaptive fitness evaluation-based parti-
cle swarm optimisation for hyperparameter and architecture
optimisation in neural networks and deep learning. CAAI
Transactions on Intelligence Technology.
Waring, J.; Lindvall, C.; and Umeton, R. 2020. Automated
machine learning: Review of the state-of-the-art and oppor-
tunities for healthcare. Artif. Intell. Medicine, 104: 101822.
White, C.; Neiswanger, W.; and Savani, Y. 2021. BA-
NANAS: Bayesian Optimization with Neural Architectures
for Neural Architecture Search. In Proceedings of the 35th
Conference on Artificial Intelligence, AAAI’2021, Virtual
Event, February 2-9, 2021.
Wu, Q.; Wang, C.; and Huang, S. 2021. Frugal optimiza-
tion for cost-related hyperparameters. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
10347–10354.
Wu, X.; Zhang, D.; Zhang, M.; Guo, C.; Yang, B.; and
Jensen, C. S. 2022. Joint Neural Architecture and Hyper-
parameter Search for Correlated Time Series Forecasting.
CoRR, abs/2211.16126.
Xu, Y.; Xie, L.; Zhang, X.; Chen, X.; Qi, G.; Tian, Q.; and
Xiong, H. 2020. PC-DARTS: Partial Channel Connections
for Memory-Efficient Architecture Search. In Proceedings
of the 8th International Conference on Learning Represen-
tations, ICLR’2020, Addis Ababa, Ethiopia, April 26-30,
2020.
Ying, C.; Klein, A.; Real, E.; Christiansen, E.; Murphy,
K.; and Hutter, F. 2019. NAS-Bench-101: Towards Repro-
ducible Neural Architecture Search. CoRR, abs/1902.09635.
Zela, A.; Klein, A.; Falkner, S.; and Hutter, F. 2018. Towards
Automated Deep Learning: Efficient Joint Neural Architec-
ture and Hyperparameter Search. CoRR, abs/1807.06906.
Zimmer, L.; Lindauer, M.; and Hutter, F. 2021. Auto-
Pytorch: Multi-Fidelity MetaLearning for Efficient and Ro-
bust AutoDL. IEEE Trans. Pattern Anal. Mach. Intell.,
43(9): 3079–3090.
Zoph, B.; and Le, Q. V. 2017. Neural Architecture Search
with Reinforcement Learning. In Proceedings of the
5th International Conference on Learning Representations,
ICLR’2017, Toulon, France, April 24-26, 2017.
Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V. 2018.
Learning Transferable Architectures for Scalable Image
Recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, CVPR’2018, Salt
Lake City, UT, USA, June 18-22, 2018.

