
PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Rethinking PUF Design for Scalable Edge AI:
A Position on Balancing ML-Attack Resistance and Real-World Deployment

Gaoxiang Li, Yu Zhuang
Department of Computer Science, Texas Tech University, TX 79409, USA

gaoli@ttu.edu, yu.zhuang@ttu.edu

Abstract

Generative and embedded AI are rapidly migrating from cen-
tralized cloud infrastructures to resource-constrained edge
devices. While this shift promises reduced latency and im-
proved data privacy, it also creates challenging security and
scalability trade-offs. Physical Unclonable Functions (PUFs)
are widely touted as low-overhead hardware security primi-
tives suitable for edge and IoT scenarios, yet most existing
work emphasizes resistance to machine learning (ML) at-
tacks at the expense of authorized modelability—the ability
for trusted entities to accurately model PUF behavior without
storing massive Challenge-Response Pair (CRP) databases.
This position paper argues that “authorized modelability”
should become one of the first-class design objectives for fu-
ture PUFs. We review existing insights and propose guide-
lines aimed at balancing ML-attack resistance with the practi-
cal requirements of large-scale deployment, thereby address-
ing a critical yet underexplored aspect of hardware authenti-
cation for edge AI.

Introduction
The Drive for Edge Security
The Internet of Things (IoT) continues to expand at a rapid
rate, with billions of devices deployed across smart homes,
factories, and urban environments (Evans 2011; van der
Meulen Gartner, Newsroom, Press Releases, 2017). Many
of these devices handle sensitive data or perform mission-
critical tasks, yet they must operate within tight power and
memory constraints. Physical Unclonable Functions (PUFs)
have emerged as a promising hardware security solution in
these contexts (Gassend et al. 2002; Herder et al. 2014; Yu
et al. 2016). By exploiting device-specific manufacturing
variations, PUFs generate unclonable challenge-response
behaviors without requiring cryptographic key storage in
non-volatile memory (Pappu et al. 2002; Suh and Devadas
2007).

PUFs and the Rise of Machine Learning Attacks
Since the concept of PUFs was introduced, multiple vari-
ants (e.g., Arbiter PUFs, Ring Oscillator PUFs) have evolved
to prevent increasingly advanced machine-learning (ML) at-
tacks (Rührmair and Holcomb 2014; Rostami et al. 2014;
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Chen et al. 2022). Attackers armed with ML can inter-
cept a subset of challenge-response pairs (CRPs) and train
models—often neural networks or even generative frame-
works—to replicate PUF behavior (Rührmair et al. 2010,
2013a; Wisiol 2022). In response, PUF developers intro-
duced intricate obfuscation techniques and dynamic trans-
formations (Zhang et al. 2021; Dominguez and Rezaei 2024;
Liu et al. 2023) to complicate unauthorized modeling.

Although these methods bolster adversarial resistance,
they often overlook or downplay a parallel concern: trusted
partners—manufacturers or authentication servers—may
also need to model the PUF’s behavior to avoid reliance on
large-scale CRP databases.

Scalability Challenges
In small-scale deployments, maintaining a dedicated repos-
itory of Challenge-Response Pairs for each device on the
server is feasible. However, as IoT and edge networks ex-
pand to thousands or even millions of devices, this ap-
proach becomes untenable (Lim et al. 2005; Zhang and Shen
2021). The overhead of curating and updating massive CRP
databases on the server undermines the scalability of PUF
technologies. An alternative is to store a “soft model” of
each PUF on the server, generating predicted responses on
demand (Maes and Verbauwhede 2010; Zalivaka, Ivaniuk,
and Chang 2019). This method drastically reduces storage
overhead and streamlines provisioning—but hinges on the
ability to accurately model the PUF during enrollment (Tun
and Mambo 2024).

Complication of ML Attack Resistance on
Authorized Modeling
Recent work on PUF has introduced innovative strate-
gies to counter ML-based cloning—ranging from dynamic
feedback loops and complex non-linear transformations to
“noisy” challenge-response mappings (Chen et al. 2022;
Wisiol 2022; Deb Paul, Dasgupta, and Bhunia 2024). While
these techniques effectively complicate adversarial model-
ing, they can also hinder trusted parties from building autho-
rized models if no additional access privileges are granted
(Xi 2019; Wisiol 2022). In such cases, some advanced PUF
architectures become “unmodelable” not only for attackers
but possibly also for legitimate stakeholders.
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Figure 1: Illustration of machine learning-based modeling attacks on PUFs in an edge-device authentication scenario. The left
section represents edge devices that utilize PUF-generated CRPs for authentication. The server verifies the responses from
these devices. However, an attacker can eavesdrop on the communication, as shown in the middle section, and collect CRPs.
The right section demonstrates how the attacker leverages these intercepted CRPs to train a machine learning model, enabling
the prediction of future responses.

Authorized Modelability: An Underexplored
Priority and Our Position
Some studies on PUF designs or PUF-based protocols have
acknowledged the need for authorized modeling in their
works, using approaches of granting trusted partners tempo-
rary or limited access to internal PUF states (e.g., through
fuse-based enrollment or secure debug modes) (Yu et al.
2016; Babaei and Schiele 2019). But to the best of our
knowledge, no work prioritizes authorized modelability as
highly as adversarial ML resistance, and less encouragingly,
quite some recent PUF design papers give no consideration
of this issue.

Security against ML attacks is surely of paramount pri-
ority, but we argue that authorized modelability is of equal,
or at least, close importance. Not only does large-scale IoT
deployment necessitate authorized modeling as elaborated
in the paragraph of Scalability Challenges, but for any scale
IoT system, large or small, the CRP database approach man-
dated by the lack of authorized modelability will enable re-
play attacks (Yu et al. 2016) unless each device is equipped
with sufficient non-volatile memory (NVM) for all chal-
lenges needed for the entire operational lifespan. Replay at-
tacks would enable adversarial parties to send instructions to
devices by masquerading as their legitimate partners, lead-
ing to another security issue deserving equal or similar at-
tention as ML attacks.

Thus, our position is that authorized modelability is an
underexplored design priority but of equal importance with
ML-attack resistance.

Toward Authorized Modelability: Enabling
Technical Approaches

With our position stated, we therefore, challenge the com-
munity in the exploration of enabling techniques for autho-

rized modelability, to (i) go deeper via assessing existing ap-
proaches to enable the selection of best matches for differ-
ent PUFs and devices, and (ii) go broader by exploring new
techniques to better fit current or future IoT devices.

Existing Approaches for Authorized Modelability
Fuse-Based Time-Limited Calibration: Past research ex-
plores hardware fuses (e.g., eFuses, anti-fuses) that grant
device manufacturers a transient, “white-box” view during
production (Yu et al. 2016; Babaei and Schiele 2019). In
this calibration phase, sufficient Challenge-Response Pairs
or partial internal signals can be collected to build a server-
side “soft model.” Following enrollment, device manufactur-
ers or owners lock the fuse, relegating attackers to a black-
box interface.
Open Questions: How can fuse circuitry be engineered
to prevent attackers from exploiting residual debug ac-
cess? Could advanced tamper-detection or cryptographic
protocols lock fuse interfaces irreversibly without risking
false lockouts? Answering these questions requires both
hardware-level reliability studies and robust security anal-
yses.

Selective Obfuscation or Cryptographic Wrappers:
Some PUFs employ cryptographic overlays—e.g., hashed
or encrypted outputs—to thwart black-box modeling (Maes
and Verbauwhede 2010; Yu et al. 2016). By selectively dis-
abling these wrappers in a secure enrollment phase, the man-
ufacturer can observe relatively transparent responses. Yet,
ensuring that this “lower security” mode never reactivates
post-deployment presents an ongoing challenge.
Open Questions: Could dynamic cryptographic toggles
track device state transitions, ensuring that an authorized de-
bugging session cannot be retriggered in the field? Do we
risk openning up new side channels when toggling between
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normal and debug modes?

Configured Challenge Spaces: Another line of work pro-
poses configurations of the challenge space for different lev-
els of obfuscation (Zhuang, Li, and Mursi 2022; Xu et al.
2023). In practice, “flagged” challenges could yield near-
raw PUF responses during manufacturer calibration, while
standard challenges remain fully obfuscated. This design
requires robust authentication of the calibrating party and
tamper-evident transitions back to obfuscated operation.
Open Questions: How can we securely bind “flagged” chal-
lenge subsets to authorized calibration? What cryptographic
protocols are necessary to prevent reusing these subsets as
an attack vector? Could partial or dynamic revocation of
flagged challenges further secure the device after the enroll-
ment phase?

New Technical Approaches
Leveraging Side-Channel Information: Side-channel
leakage is typically studied as a vulnerability exploitable
by adversaries, and has also been considered difficult or
even practically infeasible for attackers to implement (Xu
and Burleson 2014; Zalivaka, Ivaniuk, and Chang 2019)
for requiring expensive specialized instruments, well-timed
accurate measurements, and physical proximity (Mahmoud
et al. 2013; Rührmair et al. 2013b; Wei et al. 2014; Becker
and Kumar 2014; Becker 2015; Delvaux and Verbauwhede
2013; Gao et al. 2023). However, we can’t help speculating
that side-channel can possibly offer a new approach to au-
thorized modeling, where trusted entities, under controlled
conditions, are allowed to exploit side-channel data to model
PUF behavior. For example, accurate measurements of tim-
ing or power consumption with high-precision instruments
and privileged access in a secure environment might reveal
subtle and reproducible patterns in a PUF’s behavior that are
not easily accessible to remote attackers who lack physical
proximity or and special access privilege. However, the fol-
lowing investigations are needed:
– to understand what side-channel information, power con-

sumption, infrared measures, electromagnetic traces, or
others, offer stable and reproducible data suitable for
model building for legitimate parties while inexpensively
configurable to defeat adversarial access; or

– to design ephemeral side-channel interfaces to provide
one-time legitimate access for model building during the
enrollment in a secure environment while guaranteeing
no post-deployment access to any party.

Leveraging PUF Reliability Information: Another new
approach to authorized modeling, we observe, can come
from reliability-based modeling attacks, in which, each chal-
lenge used in an attack is repeatedly fed to the PUF to ob-
tain multiple responses for every challenge, and variations of
the responses due to minuscule environmental changes pro-
vide attackers more information that can enable ML cloning
of a PUF that conventional ML attacks cannot break. Since
reliability-based modeling attacks can be thwarted by lock-
down schemes (Yu et al. 2016), we are optimistic that they
can offer a mechanism for authorized modeling by allowing

trusted parties to repeatedly query the PUF with each chal-
lenge during enrollment but installing a lockdown scheme
afterward. Of course, investigations are needed to figure out
implementation details and potential risks.

New Approaches Sorely Needed: Besides the two afore-
listed potential approaches, we believe that substantially
more work is needed to look for new and different techni-
cal approaches to enable authorized modelability. How to
ensure adversary resistance while addressing the need of au-
thorized modelability is a challenging issue that may call
for investigations from theoretical cybersecurity, PUF cir-
cuit development, protocol design, and a lot more areas.

Conclusion
As ML techniques become increasingly central to both at-
tacking and defending Physical Unclonable Functions, the
importance of authorized modelability is not to be ignored.
While substantial efforts have been made to prevent adver-
sarial ML-based cloning, inadequate attention, in our view,
has been given to how trusted partners can reliably model
PUF behavior. In large-scale edge-IoT deployments, where
efficient device authentication is critical, neglecting autho-
rized modelability undermines the very benefits that make
PUFs attractive.

In this position paper, we argue that authorized modela-
bility should be elevated to a design priority equal to adver-
sarial attack resistance. We have listed some existing tech-
niques and also pointed to some directions that may offer
new approaches. But all of these need further investigations
to identify strengths and weakness as well as conditions un-
der which they are effective or risk-prone. By addressing
the needs and challenges of authorized modelability, we be-
lieve PUF technologies can better support secure and scal-
able edge deployments.
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