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Abstract
Generative Artificial Intelligence (GenAI) applies models and
algorithms such as Large Language Model (LLM) and Foun-
dation Model (FM) to generate new data. GenAI, as a promis-
ing approach, enables advanced capabilities in various appli-
cations, including text generation and image processing. In
current practice, GenAI algorithms run mainly on the cloud
server, leading to high latency and raising security concerns.
Consequently, these challenges encourage the deployment of
GenAI algorithms directly on edge devices. However, the
large size of such models and their significant computational
resource requirements pose obstacles when deploying them
in resource-constrained systems. This survey provides a com-
prehensive overview of recent proposed techniques that opti-
mize GenAI for efficient deployment on resource-constrained
edge devices. For this aim, this work highlights three main
categories for bringing GenAI to the edge: software optimiza-
tion, hardware optimization, and frameworks. The main take-
aways for readers of this survey will be a clear roadmap to
design, implement, and refine GenAI systems for real-world
implementation on edge devices.

Introduction
Generative Artificial Intelligence (GenAI) has shown great
promise in text generation, image synthesis, and multimodal
content creation. These advancements rely on large-scale
models, such as Large Language Models (LLMs), which
achieve impressive performance but require substantial com-
putational and memory resources. Traditionally executed on
cloud servers, these models introduce latency, and privacy
concerns. With the increasing demand for real-time appli-
cations and enhanced data security, there is a growing ef-
fort to integrate GenAI capabilities directly into edge de-
vices (Nezami et al. 2024; Navardi et al. 2024).

However, implementing high-intensive models on the
edge presents significant challenges (Pourmehrani et al.
2024; Kallakuri et al. 2024; Humes et al. 2023). Edge
devices, including drones (Navardi et al. 2023), and au-
tonomous systems (Manjunath et al. 2023) benefit signif-
icantly from the GenAI capabilities on devices. For in-
stance, drones can generate real-time terrain analysis in re-
mote areas, Autonomous systems can enhance decision-
making through local models. Wearable health monitoring
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could generate personalized insights from biometric data
while ensuring privacy through local data processing. To
support these applications, specialized edge hardware such
as NVIDIA Jetson, and Qualcomm AI Engine have been
developed to handle the computational demands of GenAI
while maintaining efficiency.

This situation calls for innovative approaches in software
optimization including model compression, Neural Archi-
tecture Search (NAS). In parallel, hardware optimization
including specialized accelerators, attention optimization,
and dedicated frameworks address computational and en-
ergy constraints at the edge (Ali et al. 2024). These strategies
not only reduce model size and inference latency but also ad-
dress privacy concerns when deploying complex models on
edge devices (Navardi et al. 2024). This paper aims to sur-
vey existing methods and provide extensive details on im-
plemented GenAI techniques on edge devices. To the best
of our knowledge, there is no dedicated survey on GenAI at
the edge. By reviewing state-of-the-art techniques from top-
tier conferences and journals, this work offers a roadmap for
researchers seeking to apply GenAI in edge. The main cate-
gory of the paper is organized as follows:

• Software Optimization: Discusses key strategies for
adapting GenAI models to edge devices, including model
compression methods (pruning, quantization, and knowl-
edge distillation), NAS, and open-source GenAI models.

• Hardware Optimization: Explores hardware accelera-
tors and attention optimization to highlight how they
meet GenAI’s computational demands while addressing
power and resource constraints on edge devices.

• Frameworks: Reviews frameworks to improve infer-
ence latency, memory, and overall energy efficiency.

Software Optimization
Model Compression
The rapid advancement of GenAI models, while ushering
in unprecedented capabilities, has also given rise to in-
creasingly large model architectures that present signifi-
cant deployment challenges (Guo et al. 2024a). Early at-
tempts to address these challenges explored distributed mo-
bile computing systems that could partition model computa-
tion across multiple devices (Mao et al. 2017b,a).
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Figure 1: Illustration of the flow of GenAI at the edge

This challenge has since prompted extensive research in
model compression techniques, which have evolved along
three principal directions to enable broader deployment and
accessibility. Firstly, quantization techniques have achieved
remarkable efficiency through reduced precision represen-
tations, particularly through enhanced activation distribu-
tion handling and hardware-optimized strategies. Secondly,
methodologies for pruning have advanced from rudimen-
tary magnitude-based techniques to sophisticated hardware-
aware structured approaches, enabling considerable model
reduction while preserving architectural integrity. Thirdly,
knowledge distillation has evolved to incorporate progres-
sive frameworks and multi-teacher architectures, showing
particular promise in task-specific applications. Contem-
porary research emphasizes hardware-aware compression
strategies and architecture-specific solutions. While these
advancements have enabled the deployment of foundation
models with competitive performance metrics, the funda-
mental challenge persists in optimizing the compression-
performance trade-off for edge deployment scenarios.

Quantization Model quantization has emerged as a
critical technique for deploying large-scale GenAI mod-
els on resource-constrained edge devices. Quantization ap-
proaches are broadly categorized into post-training quanti-
zation (PTQ) and quantization-aware training (QAT). PTQ
methods like OPTQ (Frantar et al. 2023) and AWQ (Lin
et al. 2024a) directly convert trained model parameters to
lower precision formats, while QAT approaches such as
EdgeQAT (Shen et al. 2024) incorporate quantization ef-
fects during training. PTQ methods are generally preferred
due to their computational efficiency, though recent ad-
vances in both approaches have enabled effective compres-
sion through sophisticated handling of weight and activa-
tion distributions. When applied to LLMs, unique chal-
lenges emerge from their heavy-tailed weight distribution.
Methods like SmoothQuant (Xiao et al. 2023) address this
through distribution smoothing and outlier handling. Mixed-
precision approaches (Chen et al. 2024b) determine opti-

mal bit widths for different components based on sensi-
tivity. Recent work like OneBit (Xu et al. 2024) and Bit-
Net (Wang et al. 2023) demonstrates viable 1-bit quanti-
zation through distribution-aware schemes. However, chal-
lenges remain in maintaining generation quality under ex-
treme compression (Egiazarian et al. 2024).

Diffusion models present their own set of quantization
challenges, particularly in handling varying activation dis-
tributions across diffusion steps. Approaches like Q-DM (Li
et al. 2023c) and Q-Diffusion (Li et al. 2023a) tackle the
challenge of varying activation distributions across diffusion
steps through adaptive calibration and noise-aware quan-
tization. Specialized temporal-aware quantization methods
(Huang et al. 2024) have been developed to handle the
unique challenges of the iterative denoising process. Cur-
rent research focuses on effectively handling dynamic acti-
vation ranges and balancing compression ratios with gener-
ation quality for edge deployment (Yao et al. 2024).

Pruning Model pruning methods can be broadly catego-
rized into structured and unstructured approaches, each with
distinct trade-offs between compression efficiency and hard-
ware compatibility. These techniques have shown particu-
lar promise in compressing large-scale generative models
while maintaining performance for edge deployment. The
field of LLM pruning has recently witnessed several novel
approaches. Structured pruning methods like LLM-Pruner
(Ma et al. 2023) and edge-optimized approaches (Khia-
bani et al. 2025) achieve 2× speedup with minimal per-
formance degradation by removing entire structural compo-
nents.Unstructured approaches like SparseGPT (Frantar and
Alistarh 2023) enable up to 60% sparsity in large-scale mod-
els, while recent advances in modality-specific pruning tech-
niques have shown promising results across speech, vision,
and multimodal domains, with methods like SpeechPrune
(Lin et al. 2024b) achieving up to 80% pruning rates while
maintaining performance. Hardware-aware methods have
become increasingly crucial, as exemplified by Flash-LLM
(Xia et al. 2023), which achieves 3× inference speedup
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through unstructured sparsity-aware system optimization.
Semi-structured pruning methods such as E-Sparse (Li et al.
2023b) further advance this direction by leveraging N:M
sparsity patterns to maintain hardware compatibility while
achieving high compression rates on edge devices.

In the context of diffusion models, methods like Diff-
Pruning (Fang et al. 2023) achieve approximately 50% re-
duction in FLOPs by leveraging Taylor expansion over
pruned timesteps while maintaining generative quality. Spe-
cialized approaches like LD-Pruner (Castells et al. 2024) im-
plement task-agnostic pruning strategies for Latent Diffu-
sion Models, while DiP-GO (Zhu et al. 2024) demonstrates
4.4× speedup on Stable Diffusion without requiring retrain-
ing. Recent work combines gradient-based pruning for mask
matrix continuity (Wan et al. 2025) with strategic data prun-
ing (Briq et al. 2024), showing particular promise for edge
deployment where both computational efficiency and gener-
ation quality are critical (Yan et al. 2024).

Knowledge Distillation. Knowledge Distillation (KD)
has emerged as a crucial paradigm for deploying GenAI
models on edge devices. The application of KD to lan-
guage models has led to two main categories: white-box and
black-box methods. White-box KD enables student models
to match both final predictions and internal representations
when the teacher model is open-source (e.g., LLaMA (Tou-
vron et al. 2023b)), while black-box KD works with closed-
source models (e.g., GPT-4 (OpenAI 2024)) through API
calls (Liu et al. 2024a). Notable advances include MiniLLM
(Gu et al. 2024), which introduces a reversed Kullback-
Leibler divergence objective to stabilize student updates, and
instruction-following distillation approaches that have pro-
duced efficient models like Vicuna (Chiang et al. 2023). Re-
cent work in instruction-following KD has enabled compact
yet capable models through supervised fine-tuning (Wu et al.
2024), while adaptive distillation methods dynamically ad-
just the process based on input complexity, focusing learning
where improvement is most needed (Liang et al. 2024).

In the domain of diffusion models, KD primarily fo-
cuses on accelerating sampling speed to address high in-
ference latency. Progressive distillation (Salimans and Ho
2022) iteratively halves sampling steps (e.g., from 1000 to
1), enabling efficient edge deployment while maintaining
generation quality. Single-step approaches (Luhman et al.
2021) compress diffusion teachers into one-step generators,
balancing efficiency and fidelity. Teacher-free acceleration
methods like DPM-Solver (Lu et al. 2022) and consistency
models (Song et al. 2023) reduce inference costs without re-
training. Recent advances include two-stage distillation for
text-conditional models (Meng et al. 2023) and score distil-
lation sampling (Poole et al. 2023) for 3D generation, show-
casing the versatility of distillation.

Neural Architecture Design
Efficient neural architecture design has emerged as a critical
research direction to address the increasing complexity and
resource demands of modern models, particularly for edge
devices (Howard et al. 2017; Elsken et al. 2019). By au-
tomating the generation of network architectures while con-
sidering specific hardware and constraints, computational

overhead, required memory, and power consumption have
been improved, while maintaining model performance.

Neural Architecture Search (NAS). Neural Architecture
Search (NAS) (Zoph 2016; Elsken et al. 2019) serves as
a powerful framework to automate the design of optimal
model topologies with strict latency, memory, or power bud-
gets. By systematically exploring a predefined search space
such as varying layer depth, width, or connection patterns.
NAS algorithms can discover specialized architectures that
outperform traditional solutions. In (Zoph 2016), they have
proposed the first NAS using reinforcement learning (RL)
to determine optimal Recurrent Neural Network (RNN) pa-
rameters. Subsequently, this idea was extended to Convono-
tional Neural Network (CNNs) in (Zoph et al. 2018), where
the authors integrated a Sequential Model-Based Optimiza-
tion (SMBO) approach with a reinforcement mechanism for
cell-based searches to find the best configuration.

In the context of GenAI, where large models often dom-
inate in tasks such as text generation or image synthe-
sis, NAS-driven architectures present a promising route to
achieve efficiency. There are a limited number of work
on NAS in the field of transformers (Liu et al. 2024c).
FL-NAS (Qin et al. 2024a) have proposed an approach
which leverages LLM to find high-performance DNNs for
resource-constrained systems. Moreover, work in (Ben-
meziane and Maghraoui 2024) proposed a LLM-based
methodology for NAS technique in Edge devices. Puz-
zle (Bercovich et al. 2024) proposed an LLM optimized for
inference using NAS under hardware constraints, achieving
a 2.17x inference throughput speedup.

Open-Source GenAI Models
The recent advancements in reasoning capabilities of mod-
els such as DeepSeek-R1 (DeepSeek-AI et al. 2025) em-
phasize the power of open research development. One of
the key contributions to the advancement in GenAI is open-
source innovations, specifically for edge scenarios in which
the resources are limited. In these cases, smaller model sizes
and less latency besides not losing performance are the
main considerations. Therefore, researchers explored var-
ious compression methods, leading to models like Distil-
BERT (Sanh et al. 2019), TinyBERT (Jiao et al. 2020), AL-
BERT (Lan et al. 2020), MobileBERT (Sun et al. 2020),
MiniLM (Wang et al. 2020b), and MiniLMv2 (Wang et al.
2021) each using techniques such as knowledge distillation,
parameter sharing, or factorization to make large models
smaller while maintaining strong performance.

Beyond these compression-based strategies that are al-
ready covered in the previous sections, novelties in archi-
tecture further improved efficiency. Reformer (Kitaev et al.
2020) introduced locality-sensitive hashing for attention and
reversible residual layers, enabling near-linear complexity
for longer sequences. Meanwhile, GPT-NeoX-20B (Black
et al. 2022), LLaMA (Touvron et al. 2023b), and LLaMA2
(Touvron et al. 2023a) showed how LLMs could be devel-
oped and released collaboratively, making it easier for edge-
focused adaptations. Even smaller-scale of these projects
such as TinyLlama (Zhang et al. 2024) and H2O-Danube-
1.8B (Singer, Philipp others 2024) now offer compact lan-
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guage models tailored to edge constraints, continuing the
trend of collaborative research. Similarly, research on in-
struction tuning (Chung et al. 2022), which trains models
to handle various tasks by exposing them to different in-
structions, reinforced the importance of building flexible and
open-source foundations for further innovation.

Researchers have further built on open releases to de-
velop conversational systems, including Alpaca (Taori et al.
2023), Koala (Geng et al. 2023), and Vicuna (Chiang et al.
2023), each developed by fine-tuning LLaMA (Touvron
et al. 2023b) on curated datasets, all demonstrating compet-
itive performance against models like ChatGPT and Bard.
These models have also served as benchmarks for edge-
focused projects such as SqueezeLLM (Kim et al. 2024),
which introduces a post-training quantization framework
to compress LLMs for more efficient inference, focus-
ing on reducing memory bandwidth, outperforming meth-
ods like GPTQ (Frantar et al. 2022), AWQ (Lin et al.
2024a), and SpQR(Dettmers et al. 2023). Taken together,
several open-source LLMs have been developed, and some
of them are compressed to reduce their size and improve
efficiency. These include MPT-7B (MosaicML NLP Team
2023), which implements a 7B-parameter architecture de-
signed for commercial applications; DLite (AI Squared
2023), which scales from 124M to 1.5B parameters; and
RedPajama-INCITE (Computer 2023), which spans 3B to
7B parameters. Open-source models and innovations can be
valuable for resource-constraint applications, and be fine-
tuned for specific tasks to improve their performance.

Hardware Optimization
Hardware Accelerators
Hardware accelerators are typically designed through the
software and hardware co-design for specific networks. Al-
gorithmically, data sparsity is enhanced by pruning, and
model compression, such as quantization, reduces network
size. On the hardware side, specific architectures are de-
signed to bypass sparse or redundant computations, increase
data reuse, and minimize data movement, thus enabling
energy-efficient acceleration on edge devices. Generative AI
(GenAI) includes GAN, LLM, and Diffusion models. While
extensive hardware work has focused on optimizing GAN
models (Chen et al. 2018; Kang et al. 2021), recent trends
have shifted toward LLM and Diffusion models. This sec-
tion reviews recent efforts in optimizing hardware acceler-
ator for LLM and Diffusion networks, with representative
works summarized in Table 1.

LLM Acceleration LLM models have diverse distribu-
tions at the tensor or channel levels, numerous studies lever-
age customized data types to accommodate this challenge.
For example, ANT (Guo et al. 2022) introduces a novel
data type and employs an adaptive mechanism to determine
the most appropriate type for each tensor. Expanding on
ANT (Guo et al. 2022) , OliVe (Guo et al. 2023) proposes an
outlier-victim pair approach, which provides a more precise
representation of outlier distributions in LLM models. Some
studies focus on reducing redundant computations in LLM
models to improve the energy efficiency during inference.

STP (Tambe et al. 2023) proposes a computation-skipping
strategy and dynamic data path reconfiguration based on en-
tropy, achieving high energy efficiency with minimal accu-
racy loss. Furthermore, it has been observed that linear pro-
jections contribute significantly to the memory footprint and
latency in LLM models. FACT (Qin et al. 2023) introduces
an eager prediction method with a leading-one detector and
log-based inner-product estimation, reducing computations
in both attention and linear projections. MECLA (Qin et al.
2024c) surpasses FACT by decomposing large matrices into
smaller sub-matrices to minimize off-chip memory access
and re-associating data on-chip for better reuse.

Recently, Computing-in-Memory (CIM) becomes a
prominent approach for LLM acceleration. CIM accelera-
tors offer significant energy efficiency gains for GEMM op-
erations. Existing studies typically leverage CIM architec-
tures to accelerate the attention mechanism, while relying on
CPUs or GPUs to handle other operations. ASADI (Li et al.
2024b) introduces a sparse attention paradigm based on di-
agonal compression (DIA) format, enabling highly parallel
computation on CIM processors. AttAcc (Park et al. 2024)
accelerates batched LLM inference on CIM/NPU heteroge-
neous systems. Given these developments, it is expected that
CIM-based accelerators for LLM models will become more
prevalent in the future.

Diffusion Acceleration Diffusion networks have made
significant progress recently in various GenAI tasks, with
different network architecture from LLM models. These net-
works generate images or videos through multiple iterations
of denoising operations, with highly similar images in con-
secutive iterations. Consequently, hardware optimizations
often leverage inter- and intra-iteration similarity to acceler-
ate Diffusion networks, typically through differential com-
puting and skipping redundant computations.

Cambricon-D (Kong et al. 2024) introduces an approxi-
mate ReLU in the Stable Diffusion (SD) network, enabling
differential computing for nonlinear functions and address-
ing the memory overhead associated with full-precision non-
linear calculations in traditional differential computing ar-
chitectures. DMPU (Qin et al. 2024b) observes that many
pixels exhibit minimal changes between consecutive time
steps in Diffusion models, and thus proposes a semantic-
segment sparse convolution along with a trivial attention
exponent inheritance method to skip redundant computa-
tions in both the convolution and attention mechanisms,
significantly enhancing the energy efficiency. EXION (Heo
et al. 2025) presents an FFN-Reuse algorithm that can be
applied across iterations, along with an improved eager
prediction method for predicting attention scores, which
reduces redundant computations and boosts throughput.
HCAEDS (Guo et al. 2024b) is the first heterogeneous CIM
chip designed for Diffusion models, incorporating a Sign-
Magnitude radix-8 Booth CIM macro for integer data and
a four-operand exponent CIM macro for floating-point data,
achieving a high energy efficiency.

Numerous GenAI hardware studies (Kong et al. 2024;
Yang et al. 2024; Wang et al. 2024c) have observed that
nonlinear functions can introduce significant latency over-
head during the hardware acceleration. These studies opti-
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Accelerator Year Platform Technology Networks Sparsity/Quantization Peak Energy Efficiency (TOPS/W)

EXION (Heo et al. 2025) 2025 ASIC simulator 14nm SD/DiT ✓/ ✓@INT12 11.53

HCAEDS (Guo et al. 2024b) 2024 CIM tapeout 28nm SD - / ✓@INT10/BF16 74.34

DMPU (Qin et al. 2024b) 2024 ASIC tapeout 22nm DDPM ✓/ - 52.01

Cambricon-D (Kong et al. 2024) 2024 ASIC simulator 7nm SD ✓/ ✓@INT3/FP16 13.34

AttAcc (Park et al. 2024) 2024 CIM simulator 7nm LLaMA/GPT-3 - / - 2.67× DGX A100

ASADI (Li et al. 2024b) 2024 CIM simulator 28nm GPT-2/BERT ✓/ - -

MECLA (Qin et al. 2024c) 2024 ASIC simulator 28nm LLaMA/BERT - / ✓@INT8 7.09

STP (Tambe et al. 2023) 2023 ASIC tapeout 28nm BERT - / ✓@FP4 18.1

OliVe (Guo et al. 2023) 2023 ASIC simulator 22nm GPT-2/OPT/BERT - / ✓@Adaptive 4bit 4× GOBO (Zadeh et al. 2020)

FACT (Qin et al. 2023) 2023 ASIC simulator 28nm BERT ✓/ ✓@INT8 4.39

Table 1: Hardware Accelerator for GenAI

mize nonlinear functions to enhance overall throughput. Ad-
ditionally, some studies (Fu et al. 2024; Dong et al. 2024;
Yan et al. 2019) have focused specifically on optimizing
nonlinear functions and have designed specialized hardware
to facilitate network inference. All of these studies indicate a
potential research trend on optimizing nonlinear functions in
GenAI networks. Combined with techniques such as elimi-
nating redundant computations and data compression, these
approaches can enhance hardware acceleration and improve
energy efficiency for GenAI systems.

Attention Optimization
Transformers have become the backbone of many GenAI
models, but their multi-head self-attention mechanism
can dominate runtime and memory usage. Therefore, re-
searchers have explored a range of strategies to optimize at-
tention on hardware and algorithmic levels.

Hardware-based. FlashAttention (Dao et al. 2022) re-
orders attention operations to reduce the number of reads
and writes between GPU high bandwidth memory (HBM)
and on-chip static RAM (SRAM) by splitting queries, keys,
and values into smaller blocks, recomputing attention on-
chip during the backward pass, and fusing multiple GPU
kernels into one. Built on this, FlashAttention-2 (Dao 2023)
takes the foundation of memory efficiency and adds better
parallelism and work distribution to further increase speed
and GPU utilization, especially for longer sequences. Then,
FlashAttention-3 (Shah et al. 2024) introduces asynchrony
and low-precision computation to further optimize the at-
tention mechanism for modern GPU architectures, which
allows for even higher performance and efficiency, along
with reduced error for low-precision (FP8) computing. Be-
sides these, xFormers (Lefaudeux et al. 2022), a PyTorch-
based library, provides a collection of optimized attention
and Transformer blocks, including custom GPU kernels and
memory-efficient attention implementations.

Algorithmic-based. Work on sparse attention reduces the
quadratic complexity of self-attention by ignoring parts of
the input that do not affect the result significantly. Child
et al. (Child et al. 2019) pioneered this approach by limit-
ing attention to strided patterns using sparse factorizations
of the attention matrix to reduce computation cost while
maintaining performance on sequence models. Subsequent
techniques like Longformer (Beltagy et al. 2020) by using

a combination of sliding window local attention and task-
motivated global attention, Big Bird (Zaheer et al. 2020) by
combining random, windowed, and global attention to create
a sparse attention mechanism, and Linformer (Wang et al.
2020a) by decomposing attention with linear projections
to achieve linear complexity introduced various structured
sparsity patterns. Meanwhile, Choromanski et al. (Choro-
manski et al. 2021) developed performer, which uses random
feature maps to approximate the softmax function, reducing
its time complexity from O(n2) to O(n).

Frameworks
Deploying GenAI models on edge devices might bring chal-
lenges because of limited computational power, memory,
and latency requirements. To address these constraints, re-
searchers have explored various techniques that simplify
computations at both the graph and operator levels. By fus-
ing kernels, reducing redundant operations or parameters,
and customizing algorithms to the hardware, these methods
enable fast inference for tasks such as large language mod-
eling, super-resolution, and more.

NVIDIA TensorRT and Apache TVM are pioneered
compiler-based optimizations by combining graph-level
fusion and quantization with lower latency. Likewise,
Google’s EdgeTPU and Coral stacks enable rapid deploy-
ment of compressed models through low-power hardware
and software stack. TensorRT-LLM (NVIDIA Corporation
2025) is also a specialized toolkit for accelerating LLM in-
ference on GPUs, including optimized CUDA kernels for
attention computations, inflight batching, and quantization.

Beyond these compilers, researchers have developed
frameworks customized for various GenAI workloads. For
instance, EdgeMoE (Yi et al. 2023) is an engine specif-
ically optimized for Mixture-of-Experts (MoE) language
models. By using expert-wise bitwidth adaptation, it sup-
ports models with a large number of parameters on edge
devices to reduce inference times substantially. Wang et al.
introduced CoreInfer (Wang et al. 2024b), achieving over
10× speedup compared to the Huggingface implementa-
tion through semantic-based sparse activation that identi-
fies, fixes, and maintains stable neuron activation patterns
at the sentence level. MELTing point (Laskaridis et al.
2024) is a mobile benchmarking suite designed to evalu-
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ate LLM performance, focusing on energy usage and mem-
ory footprints, across smartphones and Jetson platforms.
TinyChatEngine (MIT-HAN-Lab 2024) is also, an on-device
LLM/VLM Inference Library that uses compression tech-
niques to limit memory budgets while maintaining interac-
tive response times on edge hardware.

In addition to language models, solutions target Super-
Resolution (SR) and other vision-based generators. Chen et
al. introduced TileSR (Chen et al. 2024a), which splits ultra-
high-resolution images into tiles and selects the ones with
the highest upscaling difficulty; these tiles are processed in
parallel across multiple devices, reducing latency by up to
82% and improving the image quality up to 10% compared
to other alternatives such as Supremo (Yi et al. 2022). ESHP
(Wang et al. 2024a) combines a difficulty predictor with
deep reinforcement learning to distribute SR tasks among
CPUs, GPUs, and NPUs, speeding up SR processing without
modifying the original architecture of the given SR model.
Zhao et al. demonstrated a full-stack SR acceleration frame-
work for embedded GPU devices, which outperformed stan-
dard TensorRT baselines in speed due to dictionary com-
pression and operations optimization (Zhao et al. 2021).

FPGAs also provide a promising platform for runtime ac-
celeration. Li et al. proposed a lookup-table (LUT)–based
SR pipeline making sharper images while using much less
energy without losing image quality (Li et al. 2024a). Other
research has combined FFT-based processing with efficient
multipliers (Malathi et al. 2024), designed heterogeneous
CNN-SNN architectures (Choi et al. 2023), or combined
FPGA and GPU via PCIe to achieve real-time SR in micro-
scopic imaging (Gui et al. 2022). For video-specific scenar-
ios, Kim et al. employed pipeline and memory optimizations
to reach 60 fps on 4K UHD content (Kim et al. 2019), while
Sun et al. developed RNN compression techniques to man-
age temporal correlations (Sun et al. 2022). On larger multi-
core systems Georgis et al. attained speedups over CPU-only
baselines via parallelization (Georgis et al. 2019), and Liu
et al. achieved real-time 4K SR on edge FPGAs through a
DSP-enhanced caching scheme (Liu et al. 2024b). Finally,
several system-level revisions help further reduce overhead.
Fan et al. (Fan et al. 2023) leveraged codec-side data to skip
redundant decoding in video SR, improved performance by
up to 9.4×. Deformable 3D convolutional networks, essen-
tial in video tasks, were accelerated through tile decoupling
and memory optimization by Zhang et al. (Zhang et al.
2022). Even resource-limited devices like the Raspberry Pi
can support real-time SR: Osorno-Ortiz et al. integrated 2D-
DWT with parallel interpolation to handle HD images in a
short time (Osorno-Ortiz et al. 2024).

Conclusion and Future Work
This survey explores the deployment of Generative AI
(GenAI) on edge devices, highlighting its potential to re-
duce latency, enhance privacy, and enable real-time appli-
cations. It examines key enablers such as software opti-
mization, hardware specialization, and on-device inference
frameworks to overcome embedded system constraints. De-
spite progress, challenges remain in model personalization

and security across distributed nodes. Addressing these is-
sues alongside advancements in model design and hardware
acceleration can drive more efficient, scalable, and privacy-
preserving GenAI solutions at the edge.
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