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Abstract
We propose a novel framework that leverages Edge Large
Language Models (LLMs) for real-time decision-making
and contextual understanding on robotic platforms. By em-
bedding LLMs directly on edge devices, the system en-
ables autonomous operations in zero-visibility environments
such as tunnels, adverse weather, or tactical obstructions.
The framework integrates multi-modal sensor inputs, includ-
ing mmWave radar and thermal cameras, and employs pre-
trained LLMs fine-tuned for low-latency inference under
strict computational constraints. Experiments demonstrate
the framework’s ability to navigate, detect threats, and priori-
tize tasks such as medical assistance, achieving high semantic
accuracy, and significantly outperforming baseline methods
like Few-Shot Learning and Prompt Engineering. Further-
more, the system is scalable to diverse applications, including
search and rescue, tactical operations, and multi-robot coor-
dination. This work highlights the transformative potential of
Edge LLMs in enabling intelligent, reliable, and autonomous
robotic systems for dynamic and resource-constrained envi-
ronments.

Introduction
Robotic platforms operating in complex, dynamic environ-
ments require robust capabilities for real-time perception,
reasoning, and decision-making. Traditional approaches rely
on centralized computing to process sensor data, but latency,
bandwidth limitations, and the need for autonomy in field
deployments necessitate edge computing solutions (Chowd-
hury et al. 2023; Lee et al. 2021). This paper introduces
a novel framework that leverages Large Language Models
(LLMs) optimized for edge computing to enhance the auton-
omy and adaptability of robotic platforms in zero-visibility
environments.

Edge-based LLMs enable robotic platforms to process
multi-modal inputs—thermal images, radar signals, and en-
vironmental audio—locally and in real time (Lewis et al.
2020; Yadav et al. 2022). Embedding LLMs directly on
robotic platforms allows for complex contextual interpreta-
tion, such as identifying threats or injured individuals in ad-
verse conditions, without relying on remote servers. This ca-
pability is critical for search and rescue, tactical operations,
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and disaster response, where traditional optical sensors often
fail.

This work focuses on the deployment of Edge LLMs in-
tegrated with on-board sensors, including millimeter-wave
(mmWave) radar and thermal cameras. The LLM processes
contextual data to generate situational insights, classify sce-
narios, and recommend appropriate actions. Unlike conven-
tional methods that rely solely on raw sensor processing,
the proposed system fine-tunes pre-trained LLMs for low-
latency inference, achieving high semantic understanding
and adaptability to novel environments.

Experiments validate the efficacy of this framework in
real-world scenarios. Ground robots equipped with Edge
LLMs were tested in zero-visibility conditions, demon-
strating autonomous navigation, threat detection, and task
prioritization (e.g., medical assistance). The system en-
hances decision-making while reducing dependency on
high-bandwidth communication links, making it a scalable
solution for resource-constrained environments.

This paper contributes to Edge AI and autonomous
robotics by presenting a framework that integrates LLMs
with robotic platforms. By emphasizing real-time decision-
making, it advances autonomous, reliable, and versatile
robotic systems capable of operating in the most challeng-
ing conditions.

The applications of this technology are broad, from search
and rescue missions, where precise navigation is crucial,
to military operations in close-quarters combat, where vis-
ibility is compromised. Our experiments include deploying
ground robots like HUSKY and SPOT in smoke-filled tun-
nels, enabling multi-robot coordination with thermal cam-
eras and gesture or voice guidance for situational awareness
(Figure 1). These robots detect hostiles and injured indi-
viduals using bespoke LLMs for visual question answering
(VQA), demonstrating their effectiveness in real-world de-
ployments.

The rest of this paper is organized as follows: in the next
section we review related work, followed by sections on
methodology, results, and conclusions and future directions.

Related Work
Recent advancements in autonomous robotics and edge
computing have highlighted the potential of Large Language
Models (LLMs) to enhance decision-making and contextual
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Context: autonomous surveillance in zero-visibility

Figure 1: Experiments with a SPOT robot.

understanding. Traditional robotic systems primarily rely
on centralized processing units or cloud-based infrastruc-
tures to interpret sensor data and generate actions. How-
ever, these methods face significant challenges in terms of
latency, bandwidth constraints, and dependency on stable
network connectivity, particularly in dynamic and resource-
constrained environments.

Edge Computing in Robotics

The deployment of edge computing solutions on robotic
platforms has gained attention for its ability to process data
locally, reducing latency and enhancing real-time respon-
siveness. Studies such as those by (Chowdhury et al. 2023),
(Khan et al. 2023), and (Lee et al. 2021) have demonstrated
the integration of edge-based processing with sensors like
mmWave radar to improve situational awareness in adverse
conditions. However, these approaches typically rely on tra-
ditional machine learning algorithms and do not leverage the
contextual reasoning capabilities of LLMs. Our work ad-
dresses this gap by introducing Edge LLMs as a core pro-
cessing unit for real-time decision-making in multi-modal
environments.

Large Language Models for Multi-Modal Contexts

LLMs have revolutionized natural language processing by
providing powerful pre-trained models capable of under-
standing and generating human-like text. Recent works,
such as (Lewis et al. 2020) on Retrieval-Augmented Gen-
eration (RAG) and (Liu et al. 2023) on Prompt Engineer-
ing, have extended LLM applications to multi-modal tasks.
These models have been effectively employed for tasks
such as visual-language understanding, question answer-
ing, and contextual scene generation. However, the integra-
tion of LLMs into edge environments remains an emerging
research area. Unlike traditional LLM deployments, Edge
LLMs must operate under strict computational and energy
constraints while maintaining high levels of inference accu-
racy.

Multi-Modal Sensors in Zero-Visibility Navigation
Multi-modal sensors, including mmWave radar, thermal
cameras, and LiDAR, have proven critical for navigation in
zero-visibility environments. mmWave radar, in particular,
has been extensively studied for its robustness in adverse
weather conditions and occluded environments (Lee et al.
2021; Lewis et al. 2020). (Yadav et al. 2022) demonstrated
the use of mmWave radar for real-time activity recognition,
while (Zhang, Chen, and Li 2024). (Liu et al. 2023) high-
lighted its role in collaborative multi-robot systems.

Millimeter-wave (mm-wave) radar technology has gained
traction due to its ability to operate effectively in condi-
tions where optical sensors fail, such as through snow, rain,
and fog. Research by (Chowdhury et al. 2023) demonstrated
moving target detection using millimeter-wave frequency-
modulated continuous-wave (mmWave FMCW) radars. The
study integrates classical digital signal processing (DSP)
techniques, including wavelet transform, FIR filtering, and
peak detection, to improve detection accuracy in dy-
namic outdoor environments. (Yadav et al. 2022) described
mmWave radar technology for classifying human activities
in real-time using edge computing for health monitoring
and smart environments. Other related work includes (Lee
et al. 2021) for target detection in maritime environments,
(Goswami et al. 2019) for real-time multi-gesture recogni-
tion. (Lin et al. 2023) described radar-based target detection
and beamforming in IoT networks respectively. However,
the current work is the first in navigation in robot naviga-
tion in zero visibility conditions.

In this context, our work leverages mmWave radar as a
supporting modality for Edge LLMs, enabling robust data
fusion and contextual interpretation.

Human-Robot Collaboration and Decision-Making
The integration of LLMs into robotic platforms also en-
hances human-robot collaboration by enabling more natural
and context-aware interactions. Works by (Harlow, Smith,
and Thompson 2024; Radford et al. 2021; Torres, Brown,
and Chen 2024) have explored the use of pre-trained models
to improve interpretability and adaptability in robotic sys-
tems. Building on these efforts, we introduce an Edge LLM
framework that processes real-time inputs from sensors and
generates actionable insights for autonomous navigation and
decision-making in zero-visibility scenarios. The integra-
tion of advanced learning paradigms is crucial for enhancing
the adaptability and performance of robotic systems in dy-
namic environments. Table 1 offers a comprehensive com-
parison of Retrieval-Augmented Generation (RAG), Few-
Shot Learning, Zero-Shot Learning, and Prompt Engineer-
ing, each with distinct advantages and implementation com-
plexities:

• Retrieval-Augmented Generation (RAG): Combines re-
trieval and generation to enhance contextual under-
standing, particularly useful for knowledge-intensive
tasks such as detailed question answering (Lewis et al
(2020), Kelvin et al (2020), Karpukhin (2020), and Saleh
(2020)).
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• Few-Shot Learning: Learns from a few examples, en-
abling rapid adaptation to new tasks with limited data.

• Zero-Shot Learning: Generalizes from pre-trained
knowledge to perform tasks without task-specific data,
facilitating immediate deployment.

• Prompt Engineering: Uses structured prompts to guide
the output of pre-trained models, offering flexibility in
text generation tasks.

This paper bridges the gap between Edge AI and au-
tonomous robotics by combining the strengths of LLMs and
multi-modal sensing. By focusing on Edge LLMs for real-
time contextual understanding, our work contributes to ad-
vancing scalable, autonomous robotic platforms capable of
operating effectively in the most challenging conditions.

Applications in Surveillance, Search and Rescue
The practical applications of these technologies are vast,
ranging from military operations to search and rescue mis-
sions. In military settings, the ability to navigate and identify
targets in low visibility conditions is critical for operational
success. Research by (Harlow, Smith, and Thompson 2024;
Zhang, Chen, and Li 2024; Li, Wang, and Zhao 2024) on
using mm-wave radar and multi-robot collaboration in tacti-
cal environments demonstrated significant improvements in
mission outcomes. Similarly, in search and rescue scenar-
ios, the prompt identification of injured individuals and effi-
cient navigation through debris-laden environments can save
lives, as evidenced by numerous field trials and simulations.

Table 1 compares four approaches—RAG (Retrieval-
Augmented Generation), Few-Shot Learning, Zero-Shot
Learning, and Prompt Engineering—based on their core
ideas, knowledge sources, use cases, contextual understand-
ing, and implementation complexity. RAG combines re-
trieval and generation, leveraging external knowledge bases
for knowledge-intensive tasks, such as answering medical
questions using literature, but requires higher implementa-
tion complexity due to retrieval integration (Lewis et al.
2020). Few-Shot Learning adapts to new tasks using a small
number of annotated examples, balancing moderate imple-
mentation complexity with flexibility for tasks like language
translation with limited data (Brown et al. 2020). Zero-
Shot Learning generalizes from pre-trained knowledge to
perform tasks without task-specific data, offering immedi-
ate adaptability and scalability for general knowledge tasks
(Radford et al. 2021) Prompt Engineering relies on well-
crafted structured prompts to guide pre-trained models for
diverse conversational and creative tasks, requiring minimal
implementation complexity but limited by the model’s pre-
trained knowledge (Liu et al. 2023). While RAG excels in
knowledge-intensive tasks, Few-Shot and Zero-Shot Learn-
ing provide adaptability for varied scenarios, and Prompt
Engineering supports flexible text generation.

Methodology
Our methodology includes data preparation, model setup,
context processing, response generation, and evaluation.
Thermal images and pre-trained BERT (Devlin et al. 2019)

models are used for visual question answering tasks. Cosine
similarity metrics evaluate response accuracy, distinguishing
between relevant and irrelevant answers.

Data Preparation
The first step involves preparing both image and textual data.
For this research, we use thermal images that depict various
battlefield scenarios, thus providing a clear context for each
image. For textual data, we curate ground truth responses for
each image context, which serve as benchmarks for evaluat-
ing the model’s performance. Additionally, we create vari-
ous types of responses, including correct, incorrect, irrele-
vant, and gibberish responses, to comprehensively test the
model’s ability to distinguish between relevant and irrele-
vant answers.

Model Setup
In Algorithm 1 we present RAG++, a novel algorithm de-
signed to evaluate the similarity between response sentences
and a predefined ground truth using BERT embeddings. The
method begins by tokenizing both the ground truth and re-
sponse sentences, converting them into embeddings via a
pre-trained BERT model. These embeddings are then av-
eraged using mean pooling to produce a single vector rep-
resentation for each sentence. The algorithm proceeds by
computing the cosine similarity between each response vec-
tor and the ground truth vector, offering a quantitative mea-
sure of semantic similarity. This approach is particularly ef-
fective for tasks requiring a detailed comparison of textual
responses, providing a robust framework for evaluating the
relevance and accuracy of generated text in natural language
processing (NLP) applications.

The core of our methodology is the pre-trained BERT
model, specifically the ‘bert-base-uncased’ model from
Hugging Face’s Transformers library. This model is selected
due to its strong performance in natural language under-
standing tasks. Alongside the model, we use the correspond-
ing ‘BertTokenizer’ to tokenize input texts, ensuring consis-
tency with the model’s training setup. This setup allows us to
leverage the powerful contextual understanding capabilities
of BERT for our VQA tasks.

Context Processing
In context processing, each textual context associated with
an image is tokenized using the ‘BertTokenizer’. This pro-
cess involves converting text into token IDs and creating at-
tention masks to identify relevant tokens, ensuring that the
input is properly formatted for the BERT model. Once tok-
enized, the inputs are passed through the pre-trained BERT
model to obtain hidden states. These hidden states serve as
the foundational representation of the text, capturing the nu-
anced meaning and context necessary for generating accu-
rate responses.

Response Generation
Based on the model’s outputs, we generate responses for
each context. This involves interpreting the hidden states
produced by the BERT model to formulate coherent and
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Aspect RAG Few-Shot Zero-Shot Prompt Eng.

Knowledge Source External Few Examples Pre-trained Model Pre-trained Model
Adaptability High Moderate High Moderate
Complexity High Moderate Low Low
Best Use Case Knowledge Retrieval Task Adaptation Generalization Structured Prompts

Table 1: Comparison of Learning Approaches for Edge LLMs

Context
Thermal image reveals critical battlefield insights for 
immediate consideration. The image highlights multiple 
enemy soldiers, identifiable by their active use of firearms, 
indicating strategic positioning and movement. The enemy 
appears to be clustering, potentially preparing for an 
offensive maneuver. In response, it is recommended to 
continue surveillance of the thermal signatures to track any 
changes in enemy movements, deploy additional units to 
the flanks where enemy activity is concentrated, and ready 
counteroffensive measures in anticipation of an assault. This 
thermal analysis underscores the need for vigilance and 
strategic reinforcement to maintain our defensive 
advantage.

Context 1

Ground truth: “Enemy movement, clustering; prepare for counteroffensive response.”
Incorrect and irrelevant = "No immediate threat detected.”
Correct = “Enemy soldiers with weapons in a battlefield.”
Irrelevant = “This is a scene from a soccer match.” 
Irrelevant = “This is a scene from a dance party.”
Incorrect but partially true: People with weapons indicating civilian unrest.”
Incorrect = “Injured individuals needing medical assistance.”

(a) Soldiers with weapons in a tunnel Context 2
Thermal imaging reveals important insights for immediate 
action. The image highlights multiple individuals, identifiable by 
their possession of firearms, indicating strategic positioning and 
movement. The group appears to be clustering, potentially 
preparing for a coordinated action. In response, it is 
recommended to continue monitoring the thermal signatures to 
track any changes in their movements, deploy additional 
resources to the areas where activity is concentrated, and 
prepare measures in anticipation of an aggressive move. This 
thermal analysis emphasizes the need for vigilance and 
strategic reinforcement to maintain our security advantage.

Context 2

Ground truth: “Armed group clustering; prepare for aggressive action.”
Incorrect and irrelevant = "No immediate threat detected.” 
Correct but out of context = “Enemy soldiers with weapons in a battlefield.”
Irrelevant = “This is a scene from a soccer match.” 
Irrelevant = “This is a scene from a dance party.”
Correct: Two civilians with weapons.”
Incorrect = “Injured individuals needing medical assistance.” 

(b) Armed civilian group clustering Context
The thermal image shows several injured individuals lying 
on the ground. The thermal signatures highlight their 
positions, indicating they are in distress and require 
immediate medical attention. The scene appears to be a 
result of a recent incident, with multiple heat signatures 
clustered together, suggesting the presence of multiple 
casualties in a concentrated area. This image underscores 
the urgent need for emergency response and medical 
assistance to address the situation promptly.

Context 3

Ground truth: “Injured individuals; immediate medical response required urgently.”
Correct but nor relevant = "No immediate threat detected.”
Incorrect = “Enemy soldiers with weapons in a battlefield.”
Irrelevant = “This is a scene from a soccer match.” 
Irrelevant = “This is a scene from a dance party.”
Incorrect but maybe partially true: Two civilians with weapons.”
Correct = “Injured individuals needing medical assistance.” 

(c) Injured individuals on the ground

Figure 2: The three contexts used in the experiments.

contextually appropriate answers. Various types of re-
sponses are generated, including correct, incorrect, irrele-
vant, and gibberish, to evaluate the model’s ability to discern
and produce relevant information in different scenarios.

Algorithm 1, titled RAG++ Using BERT Embeddings
and Cosine Similarity, presents a systematic approach for
evaluating the semantic similarity between a predefined
ground truth sentence and multiple response sentences. This
method leverages pre-trained BERT embeddings and cosine
similarity as a metric to quantify the closeness of each re-
sponse sentence to the ground truth. The algorithm is de-
signed for tasks requiring fine-grained semantic analysis and
comparison of textual inputs, such as response evaluation in
natural language processing systems.

The process begins by initializing the necessary compo-
nents, including a pre-trained BERT model, its tokenizer,
and essential libraries such as ‘sklearn’ for cosine similar-
ity computation and ‘numpy’ for numerical processing. The
input consists of a selected ground truth sentence and a set
of six response sentences. These textual inputs are tokenized
using the BERT tokenizer with configurations such as trun-
cation, padding, and a maximum token length of 512 to en-
sure compatibility with the model’s architecture.

Following tokenization, the algorithm disables gradients
to optimize computation and passes the tokenized inputs
through the BERT model. The embeddings are derived from
the last hidden state of the model, where mean pooling
is applied to obtain fixed-length vector representations for
each sentence. These embeddings are subsequently con-
verted into NumPy arrays to facilitate efficient numerical
operations.

The final step involves calculating cosine similarity scores
between the embedding of the ground truth sentence and
the embeddings of the response sentences. This similarity
metric provides a normalized measure of semantic align-
ment, ranging between -1 and 1, with higher values indi-
cating closer alignment. The computed similarity scores are
printed for each response sentence, enabling a comprehen-
sive evaluation of their semantic correspondence with the
ground truth.

This algorithm provides a robust and scalable method for
assessing textual similarity in various applications, such as
response evaluation in question-answering systems or di-
alogue systems. By integrating pre-trained language mod-
els and efficient similarity computation, it demonstrates the
potential for high-precision semantic analysis in real-world
scenarios.
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Algorithm 1: RAG++ Using BERT Embeddings and Cosine
Similarity

1: Input: Ground truth sentence GT , Response sentences
{T1, T2, ..., T6}

2: Output: Cosine similarity scores between each re-
sponse and GT

3: Initialize BERT model and tokenizer
4: Define ground truth and response sentences
5: for each response Ti do
6: Tokenize Ti and GT
7: Compute embedding Ei using BERT
8: end for
9: Compute ground truth embedding EGT

10: for each embedding Ei do
11: Compute cosine similarity: Si =

cosine similarity(Ei, EGT )
12: Print Si

13: end for

Evaluation
Algorithm 2, titled Compare Different Embedding Meth-
ods, extends the approach of Algorithm 1 by introducing
flexibility in generating embeddings for textual inputs us-
ing various strategies. It allows for experimentation with
multiple embedding techniques, including mean pooling,
max pooling, and attention-based methods, to compute co-
sine similarity between a ground truth sentence and a list
of response sentences. This method is particularly valuable
in contexts where different embedding strategies may yield
improved performance based on the characteristics of the
dataset or task.

The algorithm begins by initializing the required compo-
nents, including a pre-trained tokenizer and language model,
as well as specifying the embedding method to be used.
The input includes a predefined ground truth sentence and
a list of response sentences. Tokenization is performed for
both the ground truth and response sentences using the pre-
trained tokenizer, ensuring compatibility with the model’s
input requirements, such as truncation, padding, and a max-
imum token length of 512.

Once tokenized, the textual inputs are passed through the
language model to obtain the hidden states. Depending on
the chosen embedding method, different strategies are ap-
plied to generate the sentence embeddings. For example,
mean pooling and max pooling aggregate information across
token embeddings in different ways, while attention-based
methods extract embeddings from the last layer or the last
four layers of the model. This modular approach allows for
tailored embedding generation suited to specific use cases.

After obtaining embeddings for the response sentences
and the ground truth, cosine similarity is computed to mea-
sure the semantic alignment between them. The similar-
ity scores are then printed, providing an evaluation of how
closely each response sentence corresponds to the ground
truth in the embedding space.

Algorithm 2 highlights the adaptability of embedding
methods in natural language processing tasks. By offering

Algorithm 2: Compare Different Embedding Methods

Require: Ground Truth Sentence GT , Text Sentences T ,
Embedding Method M

Ensure: Cosine Similarity Scores for each sentence in T
1: Initialize pre-trained tokenizer and model
2: Tokenize GT and each Ti ∈ T
3: Pass tokenized inputs through the model to obtain hid-

den states
4: Compute embeddings using method M:
5: for each Ti do
6: Compute Ei = M(Ti)
7: end for
8: Compute ground truth embedding: EGT = M(GT )
9: for each Ei do

10: Compute cosine similarity: Si =
cosine similarity(Ei, EGT )

11: Print Si

12: end for

multiple strategies for embedding generation, it enables re-
searchers and practitioners to explore and compare the ef-
fectiveness of different approaches for a given application.
This flexibility ensures that the algorithm can be fine-tuned
to meet the requirements of diverse textual analysis tasks,
ranging from semantic similarity measurement to content
classification and retrieval.

The generated responses are evaluated against the ground
truth using cosine similarity. This metric measures the close-
ness of the generated response to the expected response in
the vector space, providing a quantitative assessment of ac-
curacy and relevance. Performance metrics are established
by categorizing the responses into correct, incorrect, irrel-
evant, and gibberish. The cosine similarity scores for each
category are analyzed to determine the model’s effectiveness
in generating context-appropriate responses. This thorough
evaluation process ensures that the VQA system is rigor-
ously tested and provides valuable insights into its perfor-
mance and areas for improvement.

By following this methodology, we systematically evalu-
ate the VQA system’s performance across different contexts,
ensuring that previous contexts do not influence the results
of new contexts. This approach highlights the model’s abil-
ity to understand and respond appropriately to diverse sce-
narios, providing valuable insights into its effectiveness and
areas for improvement.

Results
Experiments demonstrate the effectiveness of the proposed
system in various contexts, including identifying threats and
injured individuals under zero-visibility conditions. Results
show significant improvements in response accuracy and
contextual understanding.

Experimental Setting
A multimodal LLM based on LLaVA 1.5 was deployed on
a Jetson Orin NX, a compact edge device featuring up to 6
ARM v8.2 CPU cores, an NVIDIA Ampere GPU with 1024
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Figure 3: Comparison of results.

CUDA cores, 16GB LPDDR5 memory, and 100 TOPS of
AI performance. LLaVA 1.5 was fine-tuned on 1,500 mili-
tary scenario images collected during testing. For baseline
comparisons and to avoid constraints from limited CPU or
memory resources, other LLMs were deployed on a dedi-
cated edge server equipped with an RTX 4090 GPU (24GB),
a high-core-count CPU, and 64GB RAM. This dual setup
enabled a comparative evaluation of fine-tuned LLaVA 1.5
under realistic edge conditions versus a high-capacity server.

The experiments assessed the RAG++ framework’s effi-
cacy for zero-visibility navigation and contextual scene un-
derstanding in battlefield scenarios. Thermal images sim-
ulated environments with visual obstructions like smoke
and low light, covering contexts such as armed soldiers in
tunnels, injured individuals, and clustering combat groups.
Each context was paired with a ground truth description,
and system-generated responses were evaluated using cosine
similarity metrics.

Pre-trained language models were used for embedding
generation, while visual-language models (VLMs) gener-
ated contextual descriptions. Responses were categorized as
correct, incorrect, irrelevant, or partially true to test the sys-
tem’s ability to differentiate relevant information. Perfor-
mance was analyzed across three scenarios, demonstrating
the robustness and adaptability of the framework.

Analysis
The results highlight the system’s capability to generate con-
textually relevant responses across diverse scenarios. For
Context 1 - (soldiers with weapons in a tunnel) shown in
Figure 2 (a), the system correctly identified enemy soldiers
with weapons and accurately recommended a counteroffen-
sive response. However, irrelevant and partially correct re-
sponses such as “This is a scene from a dance party” or
“People with weapons indicating civilian unrest” were also
observed, indicating areas for improvement in response gen-
eration.

In context 2 - (grouping of armed groups), the system
correctly identified the presence of an armed group prepar-
ing for coordinated action shown in Figure 2 (b). Partially
correct responses such as “Enemy soldiers with weapons
in a battlefield” were generated, which, while accurate in
some aspects, lacked specificity to the context. Irrelevant re-

(a)

(b)

Figure 4: Comparative analysis of various embedding meth-
ods.

sponses like “No immediate threat detected” were penalized,
emphasizing the need for enhanced contextual alignment.

For Context 3- (injured individuals on the ground), shown
in Figure 2 (c), the system successfully identified the need
for medical assistance and generated the correct response:
“Injured individuals needing medical assistance. ” However,
irrelevant responses such as “This is a scene from a soccer
match” and incorrect interpretations such as “Enemy sol-
diers with weapons on a battlefield” highlighted challenges
in adapting to highly specific contexts.

Quantitative Evaluation
The system’s performance was quantitatively evaluated by
calculating the cosine similarity scores between response
embeddings and the ground truth embeddings. Correct re-
sponses consistently achieved the highest similarity scores,
while irrelevant and incorrect responses scored significantly
lower. Across all three contexts, the RAG++ framework
demonstrated higher accuracy compared to baseline meth-
ods such as prompt engineering and few-shot learning. The
following responses were used for the quantitative evalua-
tion of the RAG++ algorithm.

• R1: Enemy soldiers with weapons in a battlefield.
• R2: This is a scene from a soccer match.
• R3: This is a scene from a dance party.
• R4: This is a scene from a soccer match.
• R5: People with weapons indicating civilian unrest.
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Jetson Orin AGX (64 GB) Fog Server (4090 RTX) Jetson Orin Nano (8GB)

Idle Power Performance 9.6 W 320 W 7.6 W
Peak Performance 32.1 W 560 W 23 W
Model Output 19.25 token/sec 124.63 token/sec 4.6 token/sec
Latency - Audio (WiFi) 1.2 sec 1.2 sec 2 sec
Power Source Robot Battery External Power Robot Battery
RAM Usage with Torch 9.1 GB 12 GB 6.8 GB

Table 2: Performance Monitoring of Edge and Fog Servers

• R6: Injured individuals needing medical assistance.

As explained in Algorithms 1 and 2, we experiments with
various embedding methods including mean pooling, max
pooling, and attention model with the output feature maps
of the last layer, and attention model with the last four lay-
ers (ML attention). In addition, we experimented with two
attention models with various attention weights to the re-
gions of interest. The results are shown in Figure 4. The six
responses (R1-R6) were evaluated against the ground truth
using cosine similarities for each embedding method dis-
cussed above. Max pooling consistently overestimated the
similarities for all responses, showing very little discrimina-
tory power. The multi-layer attention model performed the
best in terms of its discriminatory power between correct
and incorrect responses.

Figure 4a extended the comparison of the five embedding
methods in terms of the relative and absolute differences be-
tween the ground truth and responses given. The relative dif-
ference is the difference in the confidence scores of each re-
sponse from the correct response. The absolute difference is
the same as the relative difference except for the fact that he
correct response is assigned a confidence score of 1. Figure
4b shows results from a second set of experiments where
longer responses were penalized for verbosity by assign-
ing negative weights to irrelevant words. RAG++ showed
the minimum verbosity followed by few-shot learning. Both
pre-trained model and prompt engineering produced longer
responses. In critical situations such as search and rescue or
military operations verbose responses are problematic and
hence we tested the verbosity of responses. The line shown
in both Figures 4a and 4 plot the differences and show that
the multi-layer attention model has the highest discrimina-
tory power.

Real-Time Tracking and Monitoring
Each robot’s location is tracked using a Garmin 18x mod-
ule mounted on the Jetson Orin Nano, which serves as the
robot’s payload and is powered by its internal battery. The
location data is continuously streamed to the dashboard via
a message queue and simultaneously stored in MongoDB to
enable route history tracking for efficient path optimization.
MongoDB is hosted on a Fog server and communicates with
the Jetson using a client-server architecture.

The performance of the system is shown in Table 2. We
ran LLaVA 7B on both the Jetson Orin AGX and the Fog

server, while VILA 2.7B was deployed on the Jetson Orin
Nano. The Orin AGX was preferred for its efficient token
generation and optimized power consumption compared to
the Jetson Nano. Additionally, we evaluated an object detec-
tion model on both the AGX and Nano, observing that the
Nano struggled to sustain real-time performance.

Conclusions and Future Work
In this paper, we presented a novel framework integrating
Edge Large Language Models (LLMs) into robotic plat-
forms for real-time decision-making and contextual under-
standing in zero-visibility environments. By leveraging the
processing capabilities of Edge LLMs, our system demon-
strated significant improvements in interpreting multi-modal
inputs, such as thermal images and mmWave radar data,
and generating semantically accurate responses. The exper-
iments showcased the framework’s adaptability and robust-
ness in dynamic scenarios, including tactical operations and
disaster response, where traditional sensor modalities of-
ten fail. The combination of Edge LLMs and multi-modal
sensing enabled autonomous robotic platforms to prioritize
tasks, detect threats, and provide actionable insights in real-
time, reducing dependency on high-bandwidth communica-
tion links.

The results validate the feasibility of deploying LLMs on
resource-constrained edge devices, marking a step forward
in advancing autonomous systems. Furthermore, the use of
cosine similarity metrics for evaluating the semantic align-
ment of generated responses highlighted the framework’s
ability to balance computational efficiency with accuracy,
even under challenging environmental conditions.

Despite these achievements, several areas remain for fu-
ture exploration. One promising direction is the applica-
tion of Edge LLMs to swarm robotics, where multiple
robots collaborate to achieve complex objectives. The inte-
gration of LLMs into swarm systems could enhance com-
munication, coordination, and decision-making by provid-
ing a unified language-based interface for sharing contex-
tual insights. This would enable more intelligent and adapt-
able behaviors, such as dynamic task allocation, environ-
mental mapping, and coordinated navigation in unstructured
terrains.

Additionally, further optimization of Edge LLMs is re-
quired to meet the energy and computational constraints of
swarm robotics. Techniques such as model pruning, quan-
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tization, and distillation could reduce the resource foot-
print while maintaining performance. Incorporating rein-
forcement learning and adaptive fine-tuning mechanisms
could also enable Edge LLMs to evolve in real-time, im-
proving their responsiveness to changing conditions.

Future work will also focus on expanding the framework
to support a broader range of sensor modalities, such as
LiDAR, acoustic sensors, and hyperspectral imaging, for
richer multi-modal fusion. Enhanced evaluation metrics be-
yond cosine similarity, such as task-specific performance
measures, will be explored to provide a more comprehen-
sive assessment of the system’s capabilities.

We demonstrate that the integration of Edge LLMs into
robotic platforms represents a transformative step for au-
tonomous systems. Extending this innovation to swarm
robotics holds immense potential for creating scalable, in-
telligent, and resilient robotic networks capable of operating
effectively in the most challenging environments.
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