
PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

ATLASv2: LLM-Guided Adaptive Landmark Acquisition
and Navigation on the Edge

Mikolaj Walczak, Uttej Kallakuri, Tinoosh Mohsenin
Johns Hopkins University

mwalcza1@jh.edu, ukallak1@jh.edu, tinoosh@jhu.edu

Abstract
Autonomous systems deployed on edge devices face signifi-
cant challenges, including resource constraints, real-time pro-
cessing demands, and adapting to dynamic environments.
This work introduces ATLASv2, a novel system that inte-
grates a fine-tuned TinyLLM, real-time object detection, and
efficient path planning to enable hierarchical, multi-task nav-
igation and manipulation all on the edge device, Jetson Nano.
ATLASv2 dynamically expands its navigable landmarks by
detecting and localizing objects in the environment which
are saved to its internal knowledge base to be used for fu-
ture task execution. We evaluate ATLASv2 in real-world en-
vironments, including a handcrafted home and office setting
constructed with diverse objects and landmarks. Results show
that ATLASv2 effectively interprets natural language instruc-
tions, decomposes them into low-level actions, and executes
tasks with high success rates. By leveraging generative AI in a
fully on-board framework, ATLASv2 achieves optimized re-
source utilization with minimal prompting latency and power
consumption, bridging the gap between simulated environ-
ments and real-world applications.

Introduction
The growing demand for autonomous systems capable of
navigating and manipulating objects in real-world environ-
ments has driven advancements in artificial intelligence,
robotics, and edge computing (Gill et al. 2024; Navardi et al.
2024; Prakash et al. 2024a; Mazumder et al. 2023). These
systems must operate with minimal latency, high efficiency,
and robust adaptability in dynamic, unstructured environ-
ments. This paper explores deploying generative AI on the
edge (Shaharear et al. 2024), using large language models
(LLMs) as dynamic planners for hierarchical, multi-task au-
tonomous navigation.

Edge computing, the paradigm of processing data locally
on devices rather than relying on cloud infrastructure, plays
a pivotal role in this work. Processing on the edge offers
several advantages, including enhanced privacy and secu-
rity, and improved reliability in environments with limited or
no internet connectivity. In addition, edge deployment min-
imizes the dependency on external servers, ensuring consis-
tent performance even in challenging operational scenarios
(Singh et al. 2023).

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

This paper specifically focuses on the deployment of gen-
erative AI on the edge to enable natural language-driven nav-
igation and task execution. LLMs are used not only to inter-
pret high-level natural language instructions but also to dy-
namically generate actionable plans for autonomous robots
(Shah et al. 2023). We integrate navigation and manipulation
tasks, allowing the system to adapt seamlessly to new envi-
ronments. By dynamically scheduling processes like LLM
execution and object detection, the proposed system opti-
mizes onboard power consumption and latency, ensuring ef-
ficient operation on resource-constrained hardware.

To provide the Large Language Model (LLM) with infor-
mation about landmarks in the environment we integrate an
onboard object detector. The objects detected by the detector
expand the number navigable landmarks enabling the LLM
to use the new landmarks for future tasks.

This work bridges the gap between simulated environ-
ments and real-world deployment by presenting a resource-
efficient, edge-based system capable of performing com-
plex, hierarchical tasks with high-level reasoning and adapt-
ability. The findings highlight the potential of generative
AI at the edge for advancing intelligent planning with au-
tonomous systems in diverse and challenging settings. The
contributions of this paper are summarized as follows:

• A fully on-board solution and system architecture that in-
tegrates a path planning module, object detection, and a
large language model for navigation and object manipu-
lation tasks.

• A novel method for continuously expanding the set of
skills and navigable landmarks by detecting objects in
the environment and incorporating them into the system’s
knowledge base with the assistance of the LLM.

• Minimizing latency and onboard power consumption
through dynamic scheduling of processes, such as LLM
execution and object detection.

Related Work
The integration of LLMs into robotics is a rapidly grow-
ing area, aiming to enable embodied AI that can interpret
and execute natural language way-finding instructions in dy-
namic environments. Many of these works target a fully sim-
ulated environment or when deployed use very large and in-
telligent cloud-based solutions or high power devices (Dor-



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

bala et al. 2024; Rajvanshi et al. 2024; Lin et al. 2024;
Kallakuri et al. 2024; Zhu et al. 2024). For instance, (Song
et al. 2023) introduced LLM-Planner, a system that lever-
ages few-shot learning to allow embodied agents to interpret
and execute high-level natural language instructions. This
approach improves adaptability to diverse tasks with mini-
mal prior examples, enhancing their versatility in dynamic
settings. LLM-Planner demonstrates the deployment of a
robotic agent equipped with a low-level planner in a virtual
environment, integrating a pre-trained BERT-base-uncased
model (Devlin et al. 2018) with the ChatGPT API, enabling
embodied navigation based on high-level plans.

In this work we deploy an LLM for high-level planning
on the edge device Jetson Nano, which presents signifi-
cant challenges with identifying compact models that are
able to operate within strict resource constraints. Addition-
ally, many open-source models are trained on generalized
datasets, which can result in outputs lacking the precision
and focus necessary for effective high-level task decomposi-
tion. This misalignment can lead to inefficiencies, consum-
ing resources on decoding and generating responses that do
not meet task-specific requirements. To address these chal-
lenges, (Chen et al. 2024) proposed the ”Octo-planner,” a
framework that separates planning and action components,
optimized for edge devices. The Octo-planner fine-tunes
LLMs to improve success rates and efficiency, tackling is-
sues such as context length and computational costs. By
utilizing techniques like multi-LoRA training, this frame-
work supports multi-domain queries with reduced resource
demands, making it suitable for mobile devices. The Octo-
planner demonstrates significant potential for scalable, real-
time, and privacy-preserving AI applications on resource-
constrained platforms.

This work focuses on the deployment of a robotic agent
within a controlled environment that integrates a high-level
LLM planner (Prakash et al. 2024b), a low-level motion
planner, and an object detector, on the Jetson Nano edge
device. This paper provides practical insights into the de-
ployment of integrated onboard systems, inspired by frame-
works such as (Kallakuri et al. 2024), (Navardi et al. 2023)
and (Song et al. 2023). In integrating the high-level LLM
planner, we adopt an approach similar to the Octo-Planner
framework (Chen et al. 2024), fine-tuning a compact lan-
guage model to enhance system reliability, generate task-
specific responses, and minimize latency. A significant chal-
lenge with the Octo-Planner model is that with 2 billion
parameters, even in its open-source form and after quan-
tization, it occupies approximately 2 GB of memory. This
poses a risk of exceeding the Jetson Nano’s limited 4 GB
memory capacity when coupled with an object detector and
motion planner. To address this limitation, we incorporate
the state-of-the-art TinyLLaMAv1.1 model (Zhang et al.
2024), an open-source, compact language model with 1.1
billion parameters designed for efficiency and accessibil-
ity. TinyLLaMA achieves competitive performance while
significantly reducing computational overhead, making it
well-suited for resource-constrained environments. By fine-
tuning and quantizing the model, we further optimize its per-
formance for real world deployment.

Algorithm 1: The integration of ATLASv2 components is
formalized in the algorithm below, which outlines the dy-
namic interaction between the navigation, object detection,
object interaction and KB building processes.

1: function MAIN
2: STARTKBPROCESS(initialKB)
3: while True do
4: Wait for: prompt
5: subtasks← LLM(prompt)
6: EXECTASKS(subtasks)
7: end while
8: end function
9: function EXECTASKS(subtasks)

10: for all action, obj ∈ subtasks do
11: if obj /∈ KB then
12: return fail
13: else if action is navigate then
14: coo← KB(obj)
15: ros navigate(coo)
16: else
17: moveArm(obj, action)
18: end if
19: end for
20: spin()
21: return success
22: end function
23: function STARTKBPROCESS(initialKB)
24: KB ← initialKB
25: while True do
26: dets← detectAndFilterObjs()
27: for all obj ∈ dets do
28: objPos, objOrient← getCurPos()
29: KB[obj]← objPos, objOrient
30: end for
31: end while
32: end function

Proposed Approach
The proposed system integrates key components to enable
hierarchical multi-task autonomous navigation on the Jetson
Nano edge device. This architecture combines efficient path
planning, real-time object detection, and high-level reason-
ing with an LLM, all while operating within the strict com-
putational and energy constraints. The approach focuses on
leveraging generative AI at the edge for dynamic task plan-
ning and knowledge enrichment.

At the core of the system is the interaction between the
path planning module, object detection module, and LLM-
based planner. These components enable the agent to inter-
pret high-level natural language instructions, plan and exe-
cute navigation tasks, and adapt to new environments by ex-
panding its knowledge base (KB). The high-level interaction
of these components is outlined in Algorithm 1,

When using the system a natural language prompt de-
scribing the desired task is provided. The LLM planner in-
terprets the input and generates a structured plan. This plan
decomposes the task into smaller steps, which include nav-



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Figure 1: Block diagram showing how ATLASv2 is used given two sample prompts provided by the user. The system begins
with a prompt received from the user (Task 1) for which the knowledge base is appended to provide the available landmarks.
The LLM then generates a plan (if available) that is executed in sequence by the navigation and manipulation package. During
execution if a new object of interest is detected (eg. laptop and teddy bear), the object and its location, visualized using RVIZ
(Kam et al. 2015) , is appended to the expanding knowledge base. The user can then use the newly detected objects for future
tasks (Task 2). The full system is deployed into the Jetson Nano edge device and receives prompts remotely from the user.

igating to specific landmarks, and grabbing and dropping
an object. During task execution newly detected objects and
their locations are added to the internal knowledge base for
future tasks. This process is outlined in Figure 1 showing
the interaction of the elements of ATLASv2 when provided
two sample prompts in an office emulated environment. All
components, including the object detector and LLM planner
are deployed directly on the Jetson Nano to ensure reliable
operation in areas devoid of a network connection, essen-
tial for real-time decision-making. The core components of
ATLASv2 are outlined as follows:

Path Planning and Execution: The path planning and
object manipulation module developed in Robot Oper-
ating System 1 (ROS) (Stanford Artificial Intelligence
Laboratory et al. 2018) is responsible for executing the
plans generated by the LLM. It translates waypoints or

landmarks into motion commands using services such as
navigate to location for path following, spin service for
rotational scanning, grab object for picking up objects, and
drop object to release them. This configuration enables effi-
cient exploration of the environment while detecting objects
of interest with which can interact. Physically gripping ob-
jects falls outside of the scope of the system, meaning during
manipulation-based tasks a gripping or dropping-like move-
ment is executed near targets to simulate moving an object.

Object Detection and Knowledge Expansion: The ob-
ject detector selected for this work is YOLO-v5n (Jocher
et al. 2020), which is a robust, open source, compact,
and easy to use object detector compatible with TensorRT
(NVIDIA 2023) acceleration. TensorRT optimizations such
as precision reduction and layer fusion improve inference
speed and energy efficiency, making the model suitable for



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

(a) (b) (c)

Figure 2: The robotic agent used for deployment of ATLASv2 (a) Yahboom Transbot which contains a 2D lidar for mapping,
an Orbbec Astra Pro camera for depth and RGB input, a 3-Axis robotic arm for manipulating objects, crawler tracks for
moving around the environment, and a Jetson Nano. Additionally, the configurations of the real-world environment used for
system evaluation including (b) The home emulated environment, which includes a living room, kitchen, and kids room, each
populated with objects typical of a residential setting and (c) the office emulated environment, comprising of a lounge, office,
lobby, and meeting room, with items representative of a professional workplace.

edge deployment. Detected objects are localized using depth
sensors and filtered to determine their relevance as land-
marks. Relevant objects are added to the KB, which evolves
dynamically, enabling the agent to improve its understand-
ing of the environment over time.

Edge LLM Deployment: Deploying an LLM on the
memory-constrained Jetson Nano requires balancing com-
putational efficiency and performance. TinyLLama was se-
lected for its ability to deliver competitive performance
within a reduced computational footprint. The deployment
leverages llama.cpp (Gerganov 2023), which enables split-
ting model components between the GPU and CPU swap
memory, which is vital when balancing the load of the ob-
ject detector on the limited memory of the Jetson Nano.
The TinyLLama model is fine-tuned and quantized using the
Q5 K medium quantization method, provided by llama.cpp,
with the Unsloth (Han et al. 2023) framework, ensuring
alignment with task-specific scenarios. This approach allows
the model to reliably translate natural language prompts into
focused actionable plans while minimizing memory and pro-
cessing requirements.

Dynamic Process Scheduling: To minimize latency and
power consumption, the system employs dynamic schedul-
ing for computationally intensive processes. To ensure ob-
jects are not missed when navigating in the environment,
the object detector continuously evaluates images while the
LLM planner is loaded and only initialized when a new
prompt becomes available. This method ensures the system
can respond to dynamic changes in the environment while
preserving computational and energy resources.

The integration of these components ensures the system
can handle hierarchical tasks, such as multi-step navigation
and manipulation, in a resource-constrained setting.

The deployment pipeline is summarized as follows:

• YOLO asynchronously detects objects and localizes
them using depth data, which are filtered and updated
into the KB dynamically.

• The user provides a natural language task to the LLM
to generate a structured plan with waypoints, objects or
goals.

• Using generated subtasks the agent executes the plan us-
ing navigation, scanning, and object manipulation ac-
tions.

By combining TensorRT-optimized YOLO and GPU-
accelerated LLMs with dynamic scheduling, the system
achieves a balance between performance and resource effi-
ciency. Comprehensive profiling of the system demonstrates
the viability of deploying generative AI on edge devices,
showcasing its ability to perform high-level reasoning and
real-time decision-making in diverse, real-world scenarios.

Experimental Setup and Results
This section outlines the experimental setup and results used
to evaluate the proposed system and its components in a real
world environment when deployed on a robotic agent.

Robotic Agent and Environment
The Yahboom Transbot (Yahboom 2025) was selected as the
robotic platform (the agent) for executing the desired tasks,
which include both navigation and manipulation shown in
Figure 2 (a). The Jetson Nano 4GB edge computing device,
which, along with 8 GB of swap memory, manages the au-
tonomous control of the agent and supports the deployment
of the ATLASv2 LLM-guided navigation package.

ATLASv2 was evaluated in a real-world environment con-
structed within an office space. The environment included
foam pads to emulate various sections of a typical home and
office, as depicted in Figure 2 (b) and (c). The home setting
2 (b), featured three predefined landmarks in the KB: living
room, kitchen, and kids room, while the office setting 2 (c),
contained four landmarks: lounge, lobby, office, and meeting
room. Each landmark contains relevant objects to the object
detector, for example, the kitchen included items such as a



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Metric Input Prompt Cohere Quantized TinyLlama
Original (Pre-Trained) Fine-Tuned

Navigation
Prompt

Navigate to the
garage to check
if the delivery

truck is still here

1/1
navigate(garage)

0/1
I am not able to

perform tasks, but
I can provide you with
a step-by-step guide

on how to navigate ...

1/1
navigate(garage)

Manipulation
Prompt

Go to the vending
machine grab a
bottle and bring
it to the office

4/4
navigate(vending –

machine)
grab(bottle)

navigate(office)
drop()

0/4
Here’s a possible

solution:1.Navigate to the
vending machine 2. grab

a bottle from the shelf
3. Bring the bottle

to the office ...

4/4
navigate(vending –

machine)
grab(bottle)

navigate(office)
drop()

Our Prompt
Score - 29/30 0/30 27/30

Table 1: Evaluation of LLM performance, comparing the cloud-based Cohere LLM as a baseline to the pre-trained TinyLlama
model and our fine-tuned model post quantization. Results depict the total correctly generated sub-tasks versus the expected
sub-tasks across 12 high-level natural language prompts. Two representative sample prompts are included, showcasing the
expected sub-tasks alongside the sub-tasks generated by each model.

cup, bowl, apple, orange, and bottle, while the living room
contained a laptop and keyboard.

In this environment, the Yahboom Transbot was initial-
ized with a pre-loaded map containing the defined land-
marks. Using LiDAR-based mapping and simultaneous
localization and mapping (SLAM) (Thrun and Leonard
2008) packages provided by ROS, the agent navigated be-
tween these landmarks. Additionally, through the integration
YOLOv5n the robot identified objects within the environ-
ment to incrementally build a KB. This enables the agent to
plan and execute future tasks effectively. In between tasks,
the agent is controlled remotely via an SSH connection to
provide new high-level prompts to the LLM planner for con-
trolling the agent.

Edge LLM Fine-Tuning and Compression
To ensure optimal resource utilization when deploying the
TinyLLama LLM after applying quantization, the model is
reduced to a size of 745 MB, ensuring compatibility with the
Jetson Nano’s limited memory. However, since TinyLLaMA
is pre-trained with general knowledge, it requires fine-tuning
to produce reliable outputs tailored to the specific prompts
and tasks for ATLASv2.

To illustrate the need for fine-tuning, table 1 presents
a comparison of TinyLLaMA’s original outputs and the
cloud LLM Cohere’s (Cohere 2025) responses for sam-
ple prompts. While TinyLLaMA generates relevant outputs,
they lack the specificity required to decode low-level tasks
effectively. For example, two sample prompts and compari-
son to the baseline cloud LLM can be observed in columns 3
and 4 of table 1 showing the TinyLLama LLM provides rel-
evant outputs, however lack focus needed for deployment.

Prior to fine-tuning, a dataset was constructed to expose
TinyLLaMA to prompts and required low-level sub-tasks
similar to the tasks it will encounter when deployed.

Two prompt templates (or ”skeletons”) were created:
1. Manipulation-based tasks, involving a sequence of

tasks to instruct the agent to navigate to an object and
move it to another location.

2. Navigation-based tasks, for directing the agent to navi-
gate to a specific destination.

An example of how these templates are used by the model
is shown in column 3 of Table 1, which displays Coheres’
responses to both prompt types.

Using these templates, class names detected by YOLOv5n
were inserted, creating an initial dataset. To further expand
the dataset and introduce variation, prompts were augmented
and reworded using ChatGPT-4. The dataset included di-
verse system headers with varying KBs to produce context
for the LLM creating the final dataset of 20,000 samples.

TinyLLaMA was fine-tuned using the generated dataset of
15,000 training and 5,000 testing samples to enable decom-
position of natural language prompts into sequential low-
level actions. Fine-tuning involved training the model using
a batch size of 5, over three epochs with a learning rate of
5 × 10−5. Before training, the model’s loss on the dataset
was 2.3; after fine-tuning, the loss decreased to 0.4, demon-
strating significant improvement.

After fine-tuning, the TinyLLaMA model was quantized,
reducing its size to 745 MB. The fine-tuned LLM was then
evaluated using natural language prompts to verify its per-
formance. Notably:
• The LLM accurately responded to prompts containing

objects it was fine-tuned on including simple navigation
and manipulation tasks.

• For prompts involving entities (e.g., garage, lounge) not
exposed during fine-tuning, the LLM generalized effec-
tively, responding with navigation or manipulation sub-
tasks containing the target entity.



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Figure 3: Samples from the office setting experiment showing the agent successfully completing high-level tasks provided to
the onboard LLM. The Figure displays two of the prompts executed by the agent: ”Go to the meeting room” (A, B, and C) and
”I’m feeling lonely, bring the teddy bear to the office” (C, D, E, and F). For the first prompt the agent successfully navigates to
the meeting room (C) and adds the ”teddy bear” to the knowledge base along its path (B). Then, in the second prompt the agent
successfully performs actions representing grabbing the teddy bear (E) and moving it to the office (F).

• Complex prompts containing additional context (e.g., ta-
ble 1 row 2 column 5) were successfully decomposed
into actionable outputs.

The responses to the original sample prompts provided to
the pre-trained TinyLLaMa LLM are displayed in column 5
of table 1. Comparing to the original outputs the fine-tuned
LLM provides a focused and accurate response.

These results demonstrate that the fine-tuned TinyLLaMA
model is robust to input variations and capable of accurately
handling tasks it was not explicitly trained on. This adapt-
ability ensures its effective deployment on the Jetson Nano
for real-world applications.

Full System Deployment and Evaluation
With a significant portion of the Jetson Nano’s RAM allo-
cated to the object detector, components of the LLM must
be distributed between the GPU and CPU swap memory. To
address this challenge, the optimized llama.cpp framework
is deployed which supports running LLMs on resource-
constrained devices like the Jetson Nano by allowing selec-
tive offloading of layers to the GPU, while the remaining
layers are managed between RAM and swap memory. Al-
though additional latency is produced from CPU processing,
this overhead is marginal, as the LLM is queried only at the
beginning of a sequence to generate a plan or evaluated dur-
ing execution of previous plans.

To ensure efficiency and dynamic resource management,
the LLM is loaded into memory as a separate process

and initialized for decoding only when a new prompt is
available. This approach conserves computational resources
while maintaining the responsiveness required for high-level
task planning.

With the object detector and LLM high-level planner in-
tegrated, the agent is deployed in the two emulated home
and an office settings described previously. Using an initial
map and pre-loaded landmarks, the ATLASv2 KB building
package is initialized alongside the navigation system. The
TensorRT-optimized YOLOv5n object detector is launched
to analyze images and identify objects in the environment,
contributing to the KB. Finally, the LLM is initialized to en-
able user interaction through natural language prompts.

The system is evaluated under two configurations:

• Cloud-based LLM (Cohere): A cloud-based LLM serves
as the high-level planner, establishing a baseline for com-
parison.

• Fully onboard fine-tuned LLM: The fine-tuned TinyL-
LaMA model is deployed entirely on the Jetson Nano.

A sample demonstration showing the agent performing
the desired actions outlined in two sample prompts, in real-
time, using the office environment setting and onboard LLM
planner is shown in Figure 3. Both configurations success-
fully decomposed high-level tasks into actionable low-level
sub-tasks, enabling the agent to navigate the environment
and perform actions representing object manipulation tasks,
such as gripping and dropping actions near specified targets.



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Figure 4: Total power, RAM utilization, swap utilization, and latency results for navigation and manipulation based tasks on the
Jetson Nano, run in 10W mode using a 1.43 ghz CPU clock frequency, 921 mhz GPU clock frequency, 4 GB of RAM and 8 GB
of swap, during the real-world office setting experiment for the cloud and onboard implementations. The Figure shows results
over time for (a) power consumption when deploying the system using the cloud LLM Cohere, (b) memory utilization for the
system using the cloud LLM Cohere, (c) power for the fully onboard system (d) memory utilization for the fully onboard system
and (e) bar plots for peak power and memory utilization along with prompt processing latency results for simple navigation
prompts and more complex manipulation prompts.

For both configurations, the agent receives initial prompts
to navigate to pre-loaded landmarks, building the KB. Once
the KB is established, the agent is tasked with more com-
plex manipulation prompts, such as transporting an object to
a new location. Key metrics including LLM prompt decom-
position, successful execution, power consumption, RAM
usage, and swap utilization are recorded for analysis. The
prompts used to evaluate the system in both environments
are displayed in column 2 of Table 2.

The system utilization results in Figure 4, reveal resource
utilization during the experiment in the second office envi-
ronment for cloud-based and on-board configurations:
• Power Consumption: In both configurations, loading

YOLOv5n causes power consumption to stabilize at ap-
proximately 6 W. In the cloud-based LLM approach,
power consumption remains constant, with no significant
change during LLM prompting. In contrast, the fully on-
board configuration shows notable spikes to 9.2 W during
LLM processing.

• Memory and Swap Utilization: For both configurations
due to the load of the object detector, KB, and navigation
packages the RAM utilization remains at a steady 92%
to manage both swap and GPU memory. In contrast, the
swap utilization reaches approximately 25% for the off-
board approach, while the LLM configuration on-board
doubles the swap to 50%.

• Latency: in the cloud-based approach prompt response
latency averaged to 20 milliseconds for all tasks while

the onboard approach produced latencies of 8 seconds,
given simple navigation-based tasks, and up to 10 sec-
onds, given more complex manipulation-based tasks.

These results highlight the computational load and full de-
ployment of ATLASv2 on the Jetson Nano in a real-world
scenario. While the cloud-based configuration offers advan-
tages in terms of prompt response latency and consistent
power consumption, it relies on robust network connectiv-
ity, which may not always be feasible in dynamic or remote
environments. On the other hand, the fully onboard config-
uration demonstrates a clear trade-off, with increased power
and memory demands leading to greater latency.

To emphasize the benefit of the developing KB, Table
2 presents the prompts provided to the LLM planner for
both experimental settings alongside the number of success-
ful tasks executed by the agent. The agent is evaluated in a
scenario where it cannot grow the KB versus the ATLASv2
growing KB approach. During these experiments, the agent
is first given tasks to navigate to the initial pre-loaded land-
marks so the agent begins to explore the environment de-
tecting objects along the way. Then, the agent is provided
with more complex manipulation based tasks, using objects
which were not available when the system was initialized,
to determine the effectiveness of the growing KB. When the
system is unable to grow the KB, the agent fails to complete
the manipulation prompts while, leveraging the ATLASv2
approach to save landmark positions for use in future tasks
enables successful task completion.



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Setting Input Prompt
Sub-Tasks

(# Success/ Total)
Fixed Growing

Home

Go to the kitchen 1/1 1/1
Go to the kids room 1/1 1/1

Go to the living room 1/1 1/1
I’m hungry bring the
banana to the laptop 0/4 4/4

My son forgot his teddy
bear, take the teddy bear

to the kids room
1/4 4/4

Office

Go to the lounge 1/1 1/1
Go to the lobby 1/1 1/1
Go to the office 1/1 1/1

Go to the meeting room 1/1 1/1
I’m feeling lonely, bring

the teddy bear to the office 1/4 4/4
Guests are here and they

are thirsty bring the
bottle to the lobby

1/4 4/4

Table 2: Onboard LLM comparison between a fixed KB and
our dynamic growing KB for the real world home and office
setting experiments. Prompts are provided in sequence for
each setting and the number of correctly executed sub-tasks
is recorded for the fixed and growing KB. Initial prompts use
locations in the initial KB followed by tasks with objects not
loaded into the initial KB shown in bold.

Conclusion and Future Work
This work demonstrates deployment of ATLASv2 a sys-
tem architecture integrating generative AI and edge com-
puting for autonomous navigation and task execution in in-
door, controlled real-world environments. By integrating a
fine-tuned TinyLLM with real-time object detection and effi-
cient path planning, ATLASv2 achieves dynamic, hierarchi-
cal task planning and execution on the resource-constrained
Jetson Nano. The approach not only bridges the gap between
simulated and real-world deployments but also establishes a
framework for integration of a cohesive fully on-board solu-
tion capable of executing complex multi-stage tasks.

Future work will focus on evaluating ATLASv2 in more
complex outdoor environments and enhancing the system’s
capabilities through the integration of more sophisticated
open-vocabulary object detection, advanced object manip-
ulation techniques, and improved environment exploration.
These advancements aim to increase the versatility of AT-
LASv2 in dynamically changing outdoor environments.

Acknowledgments
We thank Dr. Xiaomin Lin for his review and valuable com-
ments that helped improve this paper. This project was spon-
sored by the U.S. Army Research Laboratory.

References
Chen, Y.; et al. 2024. Octo-planner: On-device Language Model
for Planner-Action Agents. arXiv preprint arXiv:2406.18082.
Cohere. 2025. Cohere - Natural Language Processing Platform.
Accessed: 2025-01-10.

Devlin, J.; et al. 2018. BERT: Pre-training of Deep Bidi-
rectional Transformers for Language Understanding. CoRR,
abs/1810.04805.
Dorbala, V. S.; et al. 2024. Can LLMs Generate Human-Like
Wayfinding Instructions? Towards Platform-Agnostic Embodied
Instruction Synthesis. arXiv:2403.11487.
Gerganov, G. 2023. llama.cpp. Accessed: 2025-01-06.
Gill, S. S.; et al. 2024. Edge AI: A Taxonomy, Systematic Review
and Future Directions. Cluster Computing, 28(1).
Han, D.; et al. 2023. Unsloth. Accessed: 2025-01-06.
Jocher, G.; et al. 2020. YOLOv5: A state-of-the-art object detection
model. Accessed: 2025-01-06.
Kallakuri, U.; et al. 2024. ATLAS: Adaptive Landmark Acquisition
using LLM-Guided Navigation. In First Vision and Language for
Autonomous Driving and Robotics Workshop.
Kam, H. R.; et al. 2015. RViz: a toolkit for real domain data visu-
alization. Telecommun. Syst., 60(2): 337–345.
Lin, B.; et al. 2024. Correctable Landmark Discovery via Large
Models for Vision-Language Navigation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 46(12): 8534–8548.
Mazumder, A. N.; et al. 2023. Reg-TuneV2: Hardware-Aware
and Multi-Objective Regression-Based Fine-Tuning Approach for
DNNs on Embedded Platforms. IEEE Micro.
Navardi, M.; et al. 2023. Metae2rl: Toward metareasoning for
energy-efficient multi-goal reinforcement learning with squeezed
edge yolo. IEEE Micro.
Navardi, M.; et al. 2024. MetaTinyML: End-to-End Metareasoning
Framework for TinyML Platforms. IEEE Embed. Syst. Lett., 16(4).
NVIDIA. 2023. TensorRT: A high-performance deep learning in-
ference library. Accessed: 2025-01-06.
Prakash, B.; et al. 2024a. Using LLMs for Augmenting Hierar-
chical Agents with Common Sense Priors. In The International
FLAIRS Conference Proceedings, volume 37.
Prakash, B.; et al. 2024b. Using LLMs for Augmenting Hierar-
chical Agents with Common Sense Priors. In The International
FLAIRS Conference Proceedings, volume 37.
Rajvanshi, A.; et al. 2024. SayNav: Grounding Large Language
Models for Dynamic Planning to Navigation in New Environments.
arXiv:2309.04077.
Shah, D.; et al. 2023. Lm-nav: Robotic navigation with large pre-
trained models of language, vision, and action. In Conference on
robot learning, 492–504. PMLR.
Shaharear, M. R.; et al. 2024. ViT-Reg: Regression-Focused
Hardware-Aware Fine-Tuning for ViT on tinyML Platforms. IEEE
Design & Test.
Singh, R.; et al. 2023. Edge AI: A survey. Internet of Things and
Cyber-Physical Systems, 3: 71–92.
Song, C. H.; et al. 2023. LLM-Planner: Few-Shot Grounded
Planning for Embodied Agents with Large Language Models.
arXiv:2212.04088.
Stanford Artificial Intelligence Laboratory et al. 2018. Robotic Op-
erating System.
Thrun, S.; and Leonard, J. J. 2008. Simultaneous Localization and
Mapping, 871–889. Springer Berlin Heidelberg. ISBN 978-3-540-
30301-5.
Yahboom. 2025. Transbot for Jetson Nano. Accessed: 2025-01-06.
Zhang, P.; et al. 2024. TinyLlama: An Open-Source Small Lan-
guage Model. Technical Report, arXiv:2401.02385.
Zhu, Y.; et al. 2024. ChatNav: Leveraging LLM to Zero-shot Se-
mantic Reasoning in Object Navigation. IEEE Transactions on
Circuits and Systems for Video Technology, 1–1.


