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Abstract

Retinal image plays a crucial role in diagnosing various dis-
eases, as retinal structures provide essential diagnostic in-
formation. However, effectively capturing structural features
while integrating them with contextual information from reti-
nal images remains a challenge. In this work, we propose
segmentation-guided dual-branch network for retinal dis-
ease diagnosis using retinal images and their segmentation
maps, named SeglmgNet. SeglmgNet incorporates a segmen-
tation module to generate multi-scale retinal structural fea-
ture maps from retinal images. The classification module em-
ploys two encoders to independently extract features from
segmented images and retinal images for disease classifica-
tion. To further enhance feature extraction, we introduce the
Segmentation-Guided Attention (SGA) block, which lever-
ages feature maps from the segmentation module to refine the
classification process. We evaluate SeglmgNet on the public
AIROGS dataset and the private e-ROP dataset. Experimental
results demonstrate that SegIlmgNet consistently outperforms
existing methods, underscoring its effectiveness in retinal dis-
ease diagnosis.

Code — https://github.com/hawk-sudo/SegImgNet

Introduction

Retinal imaging, particularly fundus photography, is a non-
invasive technique widely used in ophthalmology to cap-
ture detailed visualizations of retinal structures. By analyz-
ing these images, clinicians can diagnose not only ocular
diseases but also systemic conditions such as hypertension
and diabetes (Li et al. 2023; Tan et al. 2024). However,
manual interpretation by ophthalmologists is costly, time-
consuming, and subject to variability, potentially leading to
delays in patient care and inconsistent diagnoses. Therefore,
there is an urgent need for automated tools to improve dis-
ease detection efficiency through retinal image analysis.
Deep learning has emerged as a promising tool for au-
tomating disease detection using retinal images (Zhou et al.
2023; Huang et al. 2023; Zhao et al. 2023). These meth-
ods typically leverage established computer vision architec-
tures and employ transfer learning to adapt them for various
medical applications, as illustrated in Figure 1(a). For ex-
ample, RETFound (Zhou et al. 2023), built on the Vision
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Figure 1: Comparison of different approaches: a) Direct
classification of raw images using a standard deep learning
model. b) Classification based on the segmented image ex-
tracted from a segmentation model. c) Combined classifica-
tion using both raw and segmented images in a shared en-
coder. d) Classification using both raw images and enhanced
segmentation maps in dual encoders (ours).

Transformer (ViT) architecture, is pretrained on large-scale
datasets and later fine-tuned on retinal image datasets for
disease detection. However, despite their effectiveness, these
approaches focus primarily on modeling the overall data dis-
tribution of retinal images rather than on highlighting struc-
tural features of the retina. Critical diagnostic features are
often embedded in the fine-grained structural details of the
retina elements that may not significantly impact the overall
data distribution but are essential for accurate disease diag-
nosis. Consequently, compared to natural image classifica-
tion tasks, retinal disease diagnosis requires models with a
stronger ability to capture and interpret key structural fea-
tures. To address this challenge, a common strategy is to
segment key retinal structures from retinal images (Li and
Liu 2022; Almeida et al. 2024; Wang et al. 2021a; Sivapriya
et al. 2024). By isolating diagnostically significant struc-
tures, the model can focus on extracting relevant features, as
shown in Figure 1(b). For example, (Almeida et al. 2024)
utilizes a customized image processing technique to seg-
ment retinal blood vessels and feed them into DenseNet121
for disease classification, while (Sivapriya et al. 2024) em-
ploys ResEAD2Net for blood vessel segmentation and sub-
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Figure 2: Overview of SeglmgNet. The input retinal image is first processed by the segmentation module to generate segmen-
tation maps (top). These segmentation maps, along with the raw retinal image, are then fed into separate encoders to extract
disease-related features (bottom). The SGA block leverages intermediate feature maps from the segmentation module to gener-
ate attention maps, guiding the segmented image encoder’s focus on retinal structural features. Finally, the classifier integrates

outputs from both encoders for disease classification.

sequently applies multiple machine learning algorithms to
the segmented data for disease prediction. Although these
methods improve attention to segmented regions, they ig-
nore valuable information from complementary image areas,
potentially limiting overall diagnostic performance.

To extract more comprehensive features, recent studies
have integrated both segmentation results and retinal im-
ages for disease diagnoses (Alam et al. 2023; Joshi, Sharma,
and Dutta 2024; Xiong et al. 2025). Specifically, some ap-
proaches fuse segmented and raw images into a single input
and then feed it into an encoder for classification, as shown
in Figure 1(c), while others process segmented and raw im-
ages through separate encoders to extract features for dis-
ease classification, as shown in Figure 1(d). For example,
(Alam et al. 2023) stacks segmentation maps and retinal im-
ages into a single input for GoogleNet, whereas VisionDeep-
Al (Joshi, Sharma, and Dutta 2024; Xiong et al. 2025)
concatenates features extracted from segmented images and
retinal images using separate EfficientNet or ResNet50 mod-
els. However, these methods lack explicit interactions be-
tween segmentation and classification feature spaces. As a
result, retinal anatomical features are not fully leveraged
to enhance the learned representations in the classification
model, limiting the model’s ability to incorporate prior struc-
tural information for improved disease diagnosis.

In this paper, we propose SeglmgNet, a deep learning
framework for retinal disease classification that integrates
both retinal images and segmentation maps. By leverag-
ing multi-scale structural feature maps obtained from seg-
mentation along with original retinal images, SegImgNet
enhances classification performance. The framework con-
sists of two main components: a segmentation module and
a classification module. The segmentation module, based on
the U-Net (Ronneberger, Fischer, and Brox 2015) architec-
ture, generates retinal structure feature maps. The classifi-
cation module includes a segmented image encoder, a raw

image encoder, a classifier, and Segmentation-Guided At-
tention (SGA) blocks. The segmented image encoder ex-
tracts disease-related local features, while the raw image en-
coder captures broader global contextual information. Both
encoders are built on the ConvNeXt architecture, and the
classifier combines their outputs into a unified representa-
tion for disease classification. Additionally, the SGA block
enhances feature extraction by generating attention maps
from structural segmentation, allowing the model to focus
on critical retinal details. Extensive experiments on pub-
lic AIROGS and private e-ROP datasets demonstrate that
SeglmgNet consistently outperforms existing state-of-the-
art methods for retinal disease diagnosis.

Our Approach

Figure 2 illustrates the architecture of SegImgNet, which
consists of two main components: a segmentation module
and a classification module. The details of these two mod-
ules are introduced below.

Segmentation Module

The segmentation module fs.,4(-) employs a U-Net architec-
ture to generate retinal structure feature maps. U-Net utilizes
a symmetric encoder-decoder architecture with skip connec-
tions, enabling it to capture both low-level spatial details and
high-level abstract features. This structure ensures the pre-
cise localization of the retinal structures while preserving
fine-grained anatomical details.

The U-Net’s encoder consists of multiple convolutional
layers followed by downsampling operations, progressively
reducing spatial resolution while enhancing feature abstrac-
tion. This hierarchical representation enables the model to
capture retinal structures across multiple scales, which is es-
sential for detecting both fine-grained details and broader
pathological patterns. The decoder, on the other hand, re-
constructs the segmented image by gradually upsampling



the encoded features, restoring spatial details lost during
downsampling. Skip connections bridge the corresponding
encoder and decoder layers, allowing high-resolution fea-
tures from the encoder to be directly merged with upsam-
pled features in the decoder. These connections help pre-
serve fine-grained structural information, which is crucial
for accurately delineating retinal regions.

Specifically, given a retinal image x € RHXW*Craw,
where H, W, and C,.,,, denote the height, width, and chan-
nel size of the raw image, respectively, the corresponding
segmented image X, € R7*WXCses and multi-scale reti-

w )
;xCl

; H
nal structural feature maps {hge)g}f:1 € R are ob-

tained as follows:
Xseg) {hgie)g iL:I = fseg (X)7 (1)

where C,.4 represents the channel size of the segmented im-
age, and L represents the number of feature scales, which is
empirically set to 4 in this study (Li et al. 2024).

Classification Module

The classification module extracts structural features from
segmentation maps and contextual representations from raw
retinal images for disease diagnoses. It consists of a seg-
mented image encoder, a raw image encoder, a classifier, and
SGA blocks. Each component is detailed below.

Segmented Image Encoder: The segmented image encoder
extracts fine-grained structural representations from the out-
put of the segmentation module while incorporating seg-
mentation priors at multiple stages. Here we use ConvNeXt
(Liu et al. 2022) as a feature extractor or backbone for this
encoder. Each stage of the feature extractor is equipped with
a Segmentation-Guided Attention (SGA) block, which en-
hances attention to retinal structural features. By selectively
emphasizing relevant features and filtering out less informa-
tive regions, the SGA block ensures that the extracted repre-
sentations retain critical anatomical details essential for ac-
curate disease classification and improved diagnostic reli-
ability. The final segmentation map feature representations
are obtained from the last stage of the feature extractor,
where segmentation-guided information is further enriched
with anatomical details.

Specifically, the SGA block builds on the approach in (Li
et al. 2024), utilizing convolution operations and a sigmoid
activation function to refine feature extraction. It enhances
the intermediate feature maps of the segmented image en-
coder by integrating segmentation-derived structural infor-

mation. Given the output feature map hl(?cal from the i-th

stage of the feature extractor and the corresponding retinal

structural feature map hg?g, the SGA block produces an en-
hanced representation, formulated as:
h'®

loca

, = o(Convs,3(h® ) © h{) )

seg local

where Convsy3(-) represents a convolutional layer with a

kernel size of 3 x 3 used for adjusting thg spatial dimen-

sions to match hl(i)ml size, o(-) denotes the sigmoid activa-
tion function to generate the attention score, and ® denotes

element-wise product to highlight the retinal structure part

of feature map. The resulting enhanced feature map fz(jzaz

then fed into the next stage of the feature extractor.

is

Raw Image Encoder: The raw image encoder is designed
to extract global contextual representations from retinal im-
ages, complementing the structural features extracted by the
segmented image encoder. Similarly to the segmented im-
age encoder, it employs ConvNeXt as the backbone. How-
ever, unlike the segmented image encoder, which processes
segmented images with segmentation-derived feature map
enhancement, the raw image encoder focuses on capturing
broader disease-relevant patterns within the retinal image.
In particular, the raw image encoder is not equipped with
SGA blocks, ensuring that it does not emphasize the same
structural features as the segmented image encoder. This
design preserves feature complementarity by allowing the
segmented image encoder to prioritize segmentation-guided
structural information. The final global feature representa-
tions are obtained from the deepest stage of ConvNeXt,
where high-level disease-relevant information is encoded
while retaining spatial context.

Classifier: After obtaining the segmented image feature em-
bedding hy,.q; and the raw image feature embedding hg;opai
from the encoders, the classifier concatenates them to form
a comprehensive feature embedding h;, for disease classi-
fication. It then applies a Multilayer Perceptron (MLP) fol-
lowed by a so ftmax activation function to classify diseases
based on the feature embedding h,;. Specifically, the prob-
ability of the k-th disease, g, is computed as follows:

e = eXp(f]]E[LP(hClS)) , 3)

S exp(firp(hes))

where K denotes the total number of classes, and fj (hes))
represents the MLP output for class k.

Overall Loss Function

To address the class imbalance commonly found in medi-
cal datasets, we employ a Weighted Cross-Entropy (WCE)
loss function to train SeglmgNet. This loss function as-
signs higher penalties to misclassified minority-class sam-
ples, mitigating the dominance of majority classes and im-
proving the model’s ability to detect rare disease cases. The
WCE loss is defined as:

| MK 4 ‘ K
Zwk -y,(j) log g),(j) s.t. Zwk =1,
k=1

i=1 k=1

“)
where N is the number of input samples, wy denotes the
weight assigned to class k. y,(f) and Q,S’) represent the one-
hot encoded ground truth label and the predicted probability

of the sample 7, respectively.

Lwce = N

Experiment
Experimental Setup

Datasets: We evaluated SeglmgNet on two datasets: the
public AIROGS dataset and the private e-ROP dataset.



Dataset |Method RAW SEG AUC Sensitivity ~ Specificity F1 score Precision Accuracy
ResNet50 v X 10.969£0.006 0.914+£0.012 0.921+£0.015 0.917+0.008 0.920+0.013 0.91740.008
RETFound v X 10.92540.004 0.807£0.032 0.8794+0.031 0.837£0.008 0.872+0.025 0.843£0.005
ResNet50-MaxViT| v X [0.970£0.004 0.925+0.013 0.907+0.018 0.917+0.006 0.909+0.015 0.91640.007
AVS-DenseNet X v ]0.850£0.006 0.85940.013 0.698+0.009 0.7954+0.010 0.740-£0.008 0.778+0.010

ATROGS Res-Unet-CNNs X v ]0.8904+0.006 0.79740.037 0.824+0.032 0.807+0.013 0.820£0.021 0.811+£0.010
U-Nets-DenseNet | X v |0.915£0.004 0.8231+0.036 0.846£0.032 0.8324+0.010 0.844£0.022 0.83440.006
SA-GoogleNet v v 10.96140.003 0.900£0.030 0.90140.027 0.900£0.007 0.902+0.022 0.900+0.006
Multi-GlaucNet v v 10.96540.003 0.949+0.014 0.8444-0.032 0.902+0.009 0.860+0.023 0.897+0.010
VisionDeep-Al v v 10.97040.002 0.930+0.012 0.89940.004 0.916£0.005 0.902+0.003 0.914£0.005
SegImgNet v v 10.98540.001 0.949+0.010 0.934+-0.009 0.941+0.002 0.935+-0.008 0.940+0.003
ResNet50 v X 10.8954+0.007 0.782£0.055 0.842+0.028 0.546+0.019 0.423+0.033 0.834+0.019
RETFound v X 10.85440.017 0.725+0.024 0.82740.012 0.497+0.018 0.378+0.018 0.814+£0.011
ResNet50-MaxViT| v X [0.901£0.010 0.812+0.040 0.82540.026 0.540+0.020 0.406+0.028 0.823+0.019
AVS-DenseNet X v ]0.805+£0.021 0.78040.032 0.677£0.031 0.39140.025 0.261£0.020 0.69040.028

¢-ROP Res-Unet-CNNs X v ]0.831£0.009 0.7064+0.030 0.796+0.015 0.44940.004 0.332+0.007 0.78440.009
U-Nets-DenseNet | X v [0.883+0.012 0.732+£0.038 0.868+0.017 0.555+£0.021 0.44940.028 0.851+£0.012
SA-GoogleNet v v/ ]0.82740.027 0.757£0.044 0.73610.067 0.431£0.049 0.3054+0.055 0.739+0.055
Multi-GlaucNet v v ]0.86740.021 0.771£0.070 0.803+0.044 0.496£0.021 0.368+0.030 0.799+0.030
VisionDeep-Al v v ]0.8934+0.007 0.731£0.028 0.885+0.010 0.540+0.021 0.454+0.023 0.865+0.010
SegImgNet v v 10.92110.006 0.831-£0.027 0.8431-0.042 0.589+0.015 0.465+0.025 0.857+0.013

Table 1: Performance comparison of classification models (mean =+ std) using raw retinal images (RAW), segmented images
(SEG), or both on AIROGS and e-ROP datasets, with bold indicating the best performance.

Dataset | Model Configurations AUC Sensitivity ~ Specificity F1 score Precision Accuracy
w/o segmented image encoder | 0.984+£0.002 0.947£0.015 0.92940.019 0.93940.003 0.9311+0.017 0.938-£0.006

AIROGS w/o raw image encoder 0.95540.003 0.86340.025 0.903£0.026 0.880=£0.009 0.900+0.021 0.88340.008
w/o SGA 0.984+0.002 0.94240.009 0.930+0.011 0.937+£0.003 0.932+0.009 0.937+0.004
Full SegImgNet 0.985+0.001 0.949+0.010 0.934+0.009 0.941-+£0.002 0.935+0.008 0.940+-0.003
w/o segmented image encoder | 0.908+0.010 0.810£0.029 0.841+0.035 0.56140.034 0.43240.050 0.837+0.027

e-ROP w/o raw image encoder 0.892+0.019 0.79340.069 0.827£0.038 0.533£0.028 0.405+0.040 0.823+0.026
w/o SGA 0.91440.005 0.82540.046 0.831£0.034 0.555+0.024 0.4224+0.044 0.83140.024
Full SegImgNet 0.921+0.006 0.83140.027 0.843+0.042 0.589+0.015 0.465+0.025 0.857+0.013

Table 2: Ablation study of SeglmgNet components on AIROGS and e-ROP datasets (mean =+ std).
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Figure 3: Intermediate feature map visualizations of top-3
methods. (a) and (b) are from the AIROGS dataset, where
(a) is healthy and (b) is glaucomatous. (c) and (d) are from
the e-ROP dataset, where (c) is healthy and (d) is ROP.

* The AIROGS dataset (Steen et al. 2023) is an improved
glaucoma dataset consisting of a balanced subset of stan-
dardized retinal images. It is derived from the Rotter-
dam EyePACS AIROGS set, which contains 113,893
color retinal images from 60,357 subjects across approxi-
mately 500 different sites with heterogeneous ethnicities.
These retinal images were labeled as glaucomatous or
healthy based on clinical evaluations performed by glau-
coma specialists. For this study, we used 4,950 publicly
available retinal images, including 2,475 glaucomatous
images and 2,475 healthy images.

e The e-ROP dataset originates from the Telemedicine
Methods for Evaluating Acute Retinopathy of Prematu-

rity (e-ROP) study (Quinn et al. 2014), which collected
retinal images from 1,257 infants admitted to neonatal
intensive care units across 13 centers in North Amer-
ica. These images are captured using wide-angle retinal
cameras during scheduled diagnostic examinations. Each
retinal image was labeled as either preandplus or normal
by experienced ophthalmologists. In this study, we used
7,811 center-view retinal images, including 990 preand-
plus images and 6,821 normal images.

Baselines: We evaluated our proposed model against a di-
verse set of state-of-the-art classification models, catego-
rized based on the type of input used for disease clas-
sification: (1) Retinal image-based models, which clas-
sify diseases using only raw retinal images, including
ResNet50 (Huang et al. 2023), RETFound (Zhou et al.
2023), and ResNet50-MaxViT (Zhao et al. 2023); (2) Seg-
mented image-based models, which rely only on segmented
images, such as AVS-DenseNet (Almeida et al. 2024), Res-
Unet-CNNs (Wang et al. 2021a), and U-Nets-DenseNet (Li
and Liu 2022); and (3) Hybrid models, which integrate
both retinal images and segmented images, including SA-
GoogleNet (Alam et al. 2023), Multi-GlaucNet (Xiong et al.
2025), and VisionDeep-Al (Joshi, Sharma, and Dutta 2024).

Evaluation Metrics: We evaluated model performance us-



ing six standard metrics: Area Under the Receiver Oper-
ating Characteristic Curve (AUC) to assess discriminative
ability, sensitivity (true positive rate) to quantify disease de-
tection capability, specificity (true negative rate) to measure
the ability to identify healthy cases, precision (positive pre-
dictive value) to evaluate diagnostic confidence, F1-score to
balance precision and recall, and accuracy to reflect overall
classification performance.

Implementation Details: To ensure a fair comparison, we
conducted five-fold cross-validation on each dataset, parti-
tioning the labeled images into 80% training data and 20%
test data. The training data was further divided into a train-
ing set and a validation set in a ratio 3: 1, maintaining the
original class distribution for hyperparameter tuning. To mit-
igate class imbalance in the training set, we employed the
Random OverSampling Examples (ROSE) (Hayaty, Muth-
mainah, and Ghufran 2020) technique to balance the num-
ber of images in each class. Additionally, we applied data-
augmentation techniques, including image flipping, crop-
ping, and scaling, to the training set to improve the model’s
generalization ability. For consistency, all retinal images
were resized to 256 x 256 pixels.

All compared models are implemented using the Py-
Torch framework. The segmentation components were pre-
trained on 933 samples from six public retinal vessel seg-
mentation datasets: FIVES (Jin et al. 2022), DRIVE (Staal
et al. 2004), STARE (Hoover, Kouznetsova, and Goldbaum
2000), CHASEDBI1 (Budai et al. 2013a), HRF (Budai et al.
2013b), and Retinal Blood Vessel Segmentation (Wang et al.
2021b). The classification components were pre-trained on
the ImageNet dataset, except for RETFound, which was
trained on its custom dataset.

All experiments were accelerated using NVIDIA RTX
AS5000 GPUs. Model optimization was performed using the
Adam optimizer. To enhance performance, we conducted a
grid search to fine-tune key hyperparameters, including the
learning rate, batch size, and disease class weight in the
weighted cross-entropy loss function. The learning rate was
explored within the range 5 x 1075 to 1 x 1073, batch sizes
were selected from {16, 32,64, 128}, and class weight were
varied from 0.5 to 0.9 with a step size of 0.1. We set the max-
imum number of training epochs to 200, with early stopping
applied if validation performance did not improve within 20
epochs. The best-performing model checkpoint on the vali-
dation set was selected for testing.

Experimental Results

Comparisons with Baselines: Table 1 presents the disease
classification performance of all compared models across
two datasets. Specifically, we have the following obser-
vations: SeglmgNet consistently outperforms all baselines
across key metrics on both datasets, demonstrating its su-
perior capability to distinguish between disease and normal
cases. While SeglmgNet achieves slightly lower specificity
(0.843 £ 0.042) and accuracy (0.857 + 0.013) compared to
VisionDeep-Al (0.885 =+ 0.010 and 0.865 =+ 0.010, respec-
tively) on the e-ROP dataset, it remains highly competitive
on these two metrics. More importantly, while VisionDeep-

Al exhibits higher specificity and accuracy, it falls short in
other critical metrics, particularly sensitivity (0.731 £ 0.028
for VisionDeep-Al vs. 0.831 £ 0.027 for SeglmgNet). This
lower sensitivity increases the risk of missed diagnoses,
which can lead to delayed treatment. In medical applica-
tions, sensitivity is crucial, as missing a disease diagnosis
can have far more severe consequences than misclassifying a
healthy individual. Notably, SeglmgNet achieves the highest
sensitivity among all baselines on both data sets, confirming
its effectiveness in clinical decision-making. Figure 3 shows
the visualization of intermediate feature maps from the seg-
mented image encoder of the top three models (SeglmgNet,
VisionDeep-Al and Multi-GlaucNet) across two datasets.
We selected the feature maps produced by each model’s sec-
ond downsampling layer and visualized four representative
channels, chosen based on their mean and variance. The vi-
sualization results demonstrate that our approach achieves
higher structural clarity and consistency compared to the
other two approaches. Specifically, SeglmgNet more dis-
tinctly delineates prominent edges and anatomical struc-
tures, thereby enhancing its capability to preserve and high-
light morphological features for accurate retinal analysis.

Ablation Study: Here we investigated the contribution of
each key component in SeglmgNet, including the segmented
image encoder, raw image encoder, and SGA block. Table 2
presents the performance of different model variants: “w/o
segmented image encoder” excludes the segmented image
encoder, “w/o raw image encoder” removes the raw im-
age encoder, and “w/o SGA” omits the SGA block. The re-
sults demonstrate that each component is essential for opti-
mal performance. Removing the segmented image encoder
significantly reduces the model’s ability to capture retinal
structural features, while eliminating the raw image encoder
weakens its capacity to extract global contextual informa-
tion. Furthermore, the absence of the SGA block degrades
classification performance, highlighting the importance of
multi-scale retinal structural feature maps in enhancing rep-
resentation learning. The complete SeglmgNet model, incor-
porating all components, achieves the highest performance,
emphasizing the importance of integrating local and global
feature extraction with attention-based enhancement. These
findings confirm that each module plays a critical role in
maximizing disease classification accuracy.

Conclusion

In this study, we introduce SegImgNet, a deep learning
model that integrates local retinal structural features from
segmented images with global contextual information from
raw images for disease classification. Extensive experiments
on public and private datasets show that SeglmgNet out-
performs existing methods, demonstrating the effectiveness
of segmentation-guided attention for feature enhancement.
Our findings highlight the potential of incorporating reti-
nal structural priors into deep learning frameworks to im-
prove the robustness of Al-driven medical imaging. Future
work will focus on optimizing feature fusion, expanding the
model to broader ophthalmic applications, and improving
generalization across diverse clinical datasets.
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