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Abstract

Mortality estimation remains a key issue in cancers affect-
ing the Brain, Central Nervous System (CNS), and Bone,
among others. The recent integration of LLM-based reason-
ing into tools that aid cancer prognosis has been particu-
larly encouraging. This prompts us to examine further their
stated efficacy and devise workarounds to reduce hallucina-
tions using retrieval augmented generation. We study the clin-
ical, pathological and demographic logs of patients recorded
in the National Institutes of Health (NIH) Surveillance, Epi-
demiology, and End Results (SEER) database and develop
an integrated methodology that is user-friendly and responds
to n-shot queries with or without context. We first build a
set of custom SEER embeddings using DistilBERT, which
we use to test tree-based models in answering ‘yes/no’ type
5-year survivability questions given patient profiles. We ex-
tend the limited binary response capability of the prior mod-
els by using TabLLM, HyDE-RAG, and Step-Back RAG on
the BCNS cancer data and extend them to Bone Cancer data
from SEER using GraphRAG, as the attributes are similar.
The conversation-friendly models are able to take different
context lengths and types into account and provide reason-
ing about their responses. We successfully show that the ex-
tensive patient records in the SEER database can be utilized
to develop a powerful conversational agent that is not only
able to classify mortality outcomes but also reason about the
response by leveraging latent inter-relationships among the
unique clinical variables.

Introduction
Despite advancements in detection and treatment, cancer’s
complexity challenges early detection, precise prognosis,
and effective treatment. Artificial intelligence (AI), partic-
ularly machine learning (ML) and deep learning (DL), has
the potential to optimize current oncological treatments and
can revolutionize the healthcare industry.

In healthcare, input data encompasses diverse modalities,
including text, images, videos, and multimodal data. Tra-
ditional machine learning approaches do not integrate the
full spectrum of structured and unstructured medical data
effectively, thereby failing to capture the intricate biologi-
cal and clinical complexities of cancer. These findings un-
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derscore the critical necessity for advancing ML method-
ologies, leveraging state-of-the-art deep learning and mul-
timodal data fusion techniques.

Large Language Models (LLMs) are an intriguing de-
velopment in DL, capable of analyzing vast amounts of
structured and unstructured data, such as Electronic Health
Records (EHRs), genomic data, medical literature and data
from Cyber-Physical Healthcare Systems (CPHS). They can
provide task-specific results, enabling development of per-
sonalized treatment plans for patients, prognosis, and facil-
itate accurate and informed natural language interactions.
Using data from Surveillance, Epidemiology, and End Re-
sults (SEER) (National Cancer Institute 1975-2021), we use
Generative AI to predict the survivability of cancer patients
suffering from brain and CNS cancers. The user interacts
with a front-end chat user interface (UI) that ingests prompts
and additional context to extract insights from the data.
Building on the results obtained, we extend our work to ef-
fectively apply Generative AI for bone cancer prognosis.

Furthermore, LLMs facilitate the translation of intricate
analytical outputs into comprehensible language. This capa-
bility enables healthcare professionals to effectively inter-
pret findings without necessitating advanced technical ex-
pertise, thereby enhancing clinical decision-making. LLMs
autonomously capture complex attribute relationships, min-
imizing manual feature engineering. They can retrieve in-
formation from reliable external sources when data is in-
sufficient, enhancing response accuracy. As part of this re-
search, we develop LLM models to answer mortality pre-
diction queries in SEER data.

Prior Work
ML is increasingly used to develop predictive models for
prognosis and treatment in healthcare. In (Yu et al. 2023),
researchers built several models using the SEER data to fore-
cast 5-year survival in non-metastatic cervical cancer pa-
tients, highlighting the ability to interpret complex medical
data and improve clinical decision-making.

In the study done by Qiao et al., the SEER dataset was
used alongside methods like ElasticNet and Multilayer Per-
ceptron to predict distant metastases of thyroid cancer.(Qiao
et al. 2023) A comparative analysis was made, demonstrat-
ing that the Random Forest model provided the most accu-
rate predictions. In (Nobin, Rahman, and Alam 2022), the
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SEER dataset is used by 10 traditional machine learning
classifiers to predict the survivability of patients with ton-
sil cancer, where random forest classifier showed the high-
est results with 93.88% accuracy. Prediction of Lung metas-
tases (LM) and three-month prognostic factors in hepato-
cellular carcinoma (HCC) patients is done by researchers in
(Alkhawaldeh et al. 2023), where Random Forest, Artificial
neural network and Easy Ensemble classifiers are utilized.
The Easy Ensemble and Random Forest models demon-
strated the best performance in predicting outcomes. Both
studies, however, encountered the challenge of imbalanced
data and addressed this issue in different ways.

LLMs transform tabular data tasks through usage of NLP
and traditional machine learning. Hegselmann et al. (2023)
show that by serializing data into natural language, LLMs
outperform deep learning methods in zero- and few-shot
classification tasks due to their pre-existing knowledge base.
The paper ‘TABLET: Learning From Instructions For Tabu-
lar Data’ (Slack and Singh 2023) shows that LLMs improve
zero-shot performance by 44% with Flan-T5 and 13% with
ChatGPT when given natural language instructions.

Many LLMs have been pre-trained in medical datasets
specifically for medical applications, such as Me-LLaMA
13B and Me-LLaMA 70B (Xie et al. 2024). By continu-
ous fine-tuning, they outperform other open-source medi-
cal LLMs like GPT-4(OpenAI et al. 2024). Google’s Med-
PaLM 2(Singhal et al. 2023a) is notable, achieving 86.5%
accuracy on medical exam queries and delivering expert-
level answers. (Singhal et al. 2023b). Another notable
LLM model, OncoGPT(Jia et al. 2024), is fine-tuned for
oncology-related predictions, which is able to leverage a
dataset of more than 180,000 oncology-related notes.

The evaluation metrics for LLMs differ slightly from
those of traditional machine learning models. In (Guinet
et al. 2024), researchers have created an automated way of
RAG(Lewis et al. 2021) evaluation on specific tasks using
synthetic multiple choice questions, using item response the-
ory (IRT). LLMs are difficult to evaluate due to the variety
of capabilities and inadequate benchmarks as discussed by
(Zheng et al. 2023) The research explores the use of power-
ful LLMs as automated judges that can be scaled to provide
decisions comparable to those made by humans.

Our Approach
We use Large Language Models (LLMs) to explore the
survivability prediction problem, subsequently selecting the
one that provides the most accurate and contextually rele-
vant responses to the user. To implement the prognosis, the
following tools are used - Compute Unified Device Archi-
tecture (CUDA) enabled GPUs (T4 and A-100), Google Co-
lab/Jupyter Notebook, Python, PyTorch, LangChain.

Data Acquisition and Pre-processing: The SEER dataset
is a comprehensive and continuously updated collection of
cancer-focused information from various registries through-
out the United States. It includes various details about can-
cer patients, such as demographic, diagnostic, treatment, and
outcome data. To enhance predictive power, we conducted a
comprehensive review of existing literature, performed Ex-

ploratory Data Analysis (EDA), and applied categorical fea-
ture encoding for effective feature selection.

The features used for the Survivability Task are:
‘Site recode ICD-O-3/WHO 2008’, ‘Patient ID’, ‘Age re-

code with single ages and 85+’, ‘CS version input original
(2004-2015)’, ‘RX Summ–Surg Prim Site (1998+)’, ‘Year
of diagnosis’,‘ICD-O-3 Hist/behav’, ‘CS extension (2004-
2015)’, ‘First malignant primary indicator’, ‘Grade (thru
2017)’, ‘CS version input current (2004-2015)’, ‘Primary
Site’, ‘Laterality’, ‘5 year survivability’, ‘Sex’, ‘Race/eth-
nicity’, ‘Median household income inflation adj to 2019’

(1) TabLLM: TabLLM(Hegselmann et al. 2023) is a
model designed for few-shot classification of tabular data.
It is used in conjunction with the SEER dataset in order to
predict cancer survivability outcomes.

Figure 1: Overview of TabLLM (Hegselmann et al. 2023)

Data Serialization: Tabular data is serialized using tem-
plates converting rows to sentences. Consider a table with
columns ‘Degree Program’, ‘Age’, ‘Is Part of’, and ‘Grad-
uation year’. A template converts a row like 20, Math club,
2025 into a sentence: ‘A person aged 20 in the Electrical
Engineering Program graduates in 2025.’ (Figure 1).

Prompting and Fine-Tuning: The tabular data for
prompting the LLMs has been successfully serialized. The
T0-11b model is employed to approach few-shot classifica-
tion. It uses 4 labeled examples to fine-tune the model for the
specific task: “Will this patient survive the next 5 years? Yes
or no?”. Future work will explore additional shots to further
enhance the analysis.

Design, Modeling and Module Specifications:
TabLLM’s architecture is designed to enhance few-
shot learning and classification on tabular datasets through
several key components. Tabular datasets are serialized for
efficient data access and processing. The templates stan-
dardize query methods and enhance model interpretability.
Scripts automate template creation, data preparation, and
compliance with model input criteria. The t-few project
folder contains scripts for model training and evaluations.
These scripts manage the data flow, LLM interactions,
and evaluation metrics to ensure an efficient process from
dataset preparation to model evaluation.

(2) Use of Embeddings: This methodology utilizes the
capabilities of LLMs to transform structured data into nu-
merical representations appropriate for traditional machine
learning models. This approach uses embeddings processed
from DistilBERT (Sanh et al. 2020) to train and supervise
the various classification models.

The necessary libraries are imported and the Arize client
is set up to monitor the model’s performance(Arize AI
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Figure 2: A Classification Pipeline with Vector Embeddings

2024). The embedding generator is initialized using Arize’s
EmbeddingGeneratorForTabularFeatures using DistilBERT
as the model and setting the tokenizer’s maximum length to
512 tokens. The dataset is loaded into a Pandas DataFrame,
and its columns are divided into four groups to manage the
embedding model’s context window size. These groups are
then sorted into a dictionary. The embeddings and matching
prompts for the training and testing datasets for each group
of columns are generated and stored into new columns. Fol-
lowing this, each embedding vector is expanded into sepa-
rate columns, with each vector dimension becoming its own
column, using an explore function. An 80-20 split is utilized
for training and testing datasets. Instances of various ma-
chine learning models (e.g., XGBClassifier, Random Forest)
are created on the training set, and their performance is eval-
uated using metrics such as Accuracy, Precision, Recall, F1
Score, and AUC (Figure 2).

(3) Retrieval Augmented Generation: Retrieval-
augmented generation (RAG) is a technique in NLP that
combines retrieval-based and generative models to produce
more accurate and contextually relevant responses (Figure
3). It consists of two main components: a retriever and
a generator. A retriever searches a large knowledge base
for relevant information based on the user’s prompt, while
a generator uses the retrieved information to generate a
contextually relevant response. This combination allows
the LLM to incorporate external information in real-time.
RAG is especially beneficial for tasks that prioritize factual
accuracy and access to up-to-date information. It is a
superior approach to TabLLM, as it can retrieve updated
data without retraining, unlike TabLLM, and can handle
large unstructured datasets.

Figure 3: A General RAG Framework

For brain and CNS cancers, serialized representation of
the database was fed as external context to the RAG models.
• Data Preprocessing and Loading: The PDF is loaded

and processed using PyPDF2 to extract text which is con-
catenated into a single string. Patient information is seg-
mented using regular expressions, and each segment cor-
responds to a distinct patient record.

• Embedding Generation: The FastEmbedEmbeddings
model from LangChain is used to encode each segmented
data as numerical vectors. The embeddings are stored in
the Chroma(Chroma AI 2024) Vector Store, enabling ef-
ficient similarity searches based on user queries.

• Retrieval Mechanism: The Chroma Vector Store en-
ables the retriever to identify similar patient records. For
each query, the top 20 relevant records are retrieved, and
the query is contextualized using a prompt template to
enhance accuracy and comprehension.

• Generative Model Integration: After retrieving records
and reformulating queries, the Llama-3(Dubey et al.
2024) model is used to generate coherent answers.
Prompt templates are useful for procedurally guiding
generation and ensure relevant, structured responses.

• Question Processing and Response Generation: User
queries are structured to be compatible with Llama-3
processing, allowing for the retrieval of relevant patient
record segments. These embeddings are added to the
RAG chain, which generates contextually aligned an-
swers. RunnablePassthrough in LangChain integrates re-
trieval and generation components to streamline the pro-
cess and deliver the final result.

(3.1) RAG Variations and Optimizations: Two varia-
tions of RAG were used: Step-Back, HyDE.

RAG using Step-Back Prompting (Zheng et al. 2024):
This technique iteratively refines user queries to enhance re-
sponse accuracy and contextual alignment. It involves sub-
mitting a query, retrieving relevant data, generating a pre-
liminary response, and refining the query through a feedback
loop (Figure 4). Users can rephrase queries to extract addi-
tional insights to enhance the quality of the queries and the
final output. LLama-3 is employed for response generation.

Figure 4: A Step-back prompting example showing an in-
stance of a high-school physics concept (Zheng et al. 2024).

HyDE-RAG: Hypothetical Document Embeddings
(HyDE-RAG(Gao et al. 2022)) method is used in RAG to
improve the quality of document retrieval and response
generation (Figure 5). By combining document retrieval
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and hypothetical reasoning, HyDE is an advanced and
context-aware retrieval system compared to traditional
RAG. From a user’s initial query, the LLM (e.g. GPT-3)
generates a hypothetical response. The generated response
replaces the original query as the input for the document
retriever. The contextual information is transformed into a
numerical vector, facilitating a similarity search within the
vector store. This process enables the retriever to identify
and retrieve documents that are more contextually relevant
to the refined query compared to those obtained from the
initial query, thereby enhancing the accuracy and relevance
of the retrieved information. The generator (another LLM)
processes these retrieved documents and the initial query to
generate the final response.

Figure 5: The HyDE model (Gao et al. 2022)

Building on these implementation techniques, we have
been working on RAG approaches for Bone cancer prog-
nosis using SEER data, starting with an approach called
GraphRAG(Microsoft 2024).

GraphRAG: GraphRAG, a Retrieval-Augmented Gen-
eration (RAG) technique developed by Microsoft Re-
search, enhances LLMs in synthesizing complex, propri-
etary datasets not explicitly trained on. Unlike traditional
RAG, which retrieves information based solely on vector
similarity, it utilizes LLM-generated knowledge graphs to
establish connections between distinct data points through
shared attributes. This structured approach enables a deeper
contextual understanding, allowing it to extract and link
related yet disparate information, resulting in more accu-
rate and insightful responses. Particularly relevant to our re-
search, it facilitates survivability prediction by enabling non-
experts to leverage its capabilities without technical exper-
tise. Compared to other RAG approaches discussed above,
GraphRAG enables deeper reasoning for the answers pro-
vided and can scale efficiently for larger datasets.

Experimental Results

Figure 6: Results of various metrics for TabLLM (4 shots)

TabLLM: Figure 6 presents performance metrics, includ-
ing Micro F1 Score, Macro F1 Score, and Accuracy, across

various seeds and a shot count of 4 for the 5-year surviv-
ability task using the SEER dataset for TabLLM. Using 4
shots for TabLLM is motivated by the scarcity of labeled
data in medical datasets. It serves as a baseline for under-
standing the model’s data requirements, while also ensur-
ing computational efficiency and enabling rapid experimen-
tation. The model performed consistently on different seeds
(seed 42 produced the most promising results), however, the
baseline achieved with TabLLM was not optimal. It was ob-
served that increasing the number of shots did not lead to a
significant improvement in performance.

DistilBERT Embeddings and Tree-based Models: The
DistilBERT language model was used to construct embed-
dings from the SEER dataset and evaluated using perfor-
mance metrics, including Accuracy, Precision, Recall, F1
Score, and ROC AUC. These embeddings are fed into vari-
ous classifier models such as XGBClassifier, Decision Tree,
Random Forest, and Gradient Boosting.

Figure 7: Survivability Task Comparative Analysis

Significance of the Results Obtained for the Surviv-
ability Task: In predicting the 5-year survival rate for brain
cancer patients, boosting methods such as Gradient Boost-
ing and XGBClassifier outperform other techniques due to
their ensemble nature, which enhances accuracy and reduces
overfitting by iteratively correcting the mistakes of earlier
trees. These models achieve higher ROC AUC values than
others through effective handling of different data distribu-
tions, as shown in Figure 7. RandomForest performs well
by averaging multiple decision trees, allowing it to balance
variance and bias.

Figure 8: Metastasis Task Comparative Analysis

Significance of Results for Bone Metastasis Task: The
results for Bone Metastasis highlight significant challenges
due to the unbalanced dataset, as shown in Figure 8. The
dataset has 3361 rows as ‘No Metastasis’ and only 6 rows as
‘Yes Metastasis’. As a result, most classifiers demonstrate
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high accuracy but very low precision and recall. Many clas-
sifiers achieve ROC AUC scores close to 0.5, which suggests
their performance is equivalent to that of random guessing.
However, models like AdaBoost and XGBClassifier show
better class discrimination with their ROC AUC values ex-
ceeding 0.6. Despite low overall performance, GaussianNB
demonstrates the ability to identify the minority class.

Retrieval Augmented Generation: Two benchmarks
were evaluated with Simple RAG to establish baseline per-
formance on Llama-3. When tested using the context from
the PubMedQA dataset, which provides ‘yes’ or ‘no’ an-
swers based on biomedical literature, the model achieved
64.29% accuracy when answering questions about can-
cer. For domain-specific long-form cancer-related questions,
without external context, the model achieved responses with
an average cosine similarity of over 60%. These benchmarks
indicate promising results, but suggest the need for further
refinement when handling detailed queries.

Comparative Analysis of the RAG Variants: Step-Back
Prompting RAG achieves the highest accuracy at 0.70, ex-
celling in overall correct classifications (Figure 9). Vanilla
RAG has superior recall at 0.81 and the highest F1 score at
0.58. However, all methods struggle with low precision.

Figure 9: Comparative Analysis of RAG Variants

Figure 10: Comparative Analysis of Different Techniques

Key Takeaways: The results in Figure 10 indicate that
XGBClassifier (Embeddings Approach) outperforms other
models with high accuracy (0.8505), precision (0.7407), re-
call (0.6897), F1 score(0.7143), and ROC AUC(0.9177).
The bar chart highlights XGBClassifier’s superior perfor-
mance. However, step-back prompting has broader applica-
tions due to its ability to handle diverse query encodings in
prompts and interact directly with the user. SimpleRAG also
provides the best precision-recall balance.

Preliminary results on Bone Cancer using GraphRAG
and Pinecone: We implemented GraphRAG on the com-
plete data for bone cancer logs in the SEER database. It pro-
vides a robust solution with detailed responses, especially

when cost is not a limiting factor. We experiment with both
global and local search options provided by GraphRAG us-
ing the prompt ‘What are the common primary sites for
a white male?’. Figures 11-12 demonstrate that the lo-
cal search method deliver more precise results for spe-
cific, narrowly-defined queries, making them suitable for
use cases requiring tailored answers. We also implemented a
chat application with a vector database Pinecone (Pinecone
2025). In Figure 13, significant cases can be attributed to
patients in the mentioned age group.

Figure 11: Local Search Prompt/Response with GraphRAG

Figure 12: Global Search Prompt/Response with GraphRAG

Figure 13: Prompt/Response using Pinecone

Conclusion and Future Work
For survival analysis in the Brain and CNS cancer pa-
tients, the ensemble XGBClassifier using custom SEER
embeddings outperforms other models. However, step-back
prompting allows for interaction with the user and enhances
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query encoding. For bone cancer, preliminary work indi-
cates GraphRAG excels in delivering detailed, context-rich
responses, enabling deeper reasoning and precise informa-
tion retrieval. These experiments demonstrate the feasibil-
ity of posing the cancer survival prediction problem as an
LLM-driven natural-language understanding and response
generation task, although rigorous benchmarking needs to
be done to verify the usefulness, alignment and reliability
of the said models. Generative models allow for detailed re-
sponses when working with large datasets and also enable
integration with external sources to retrieve relevant answers
if they are not available within the data. The next step is to
evaluate responses using established metrics and fine-tune
the models. A comprehensive evaluation of the responses
may be done using the ‘LLM as a Judge’ (Zheng et al. 2023)
framework and multiple LLM models can be employed to
ensure robustness in the assessments. Future work will aim
at expanding the use of LLM-based CPHS to incorporate ad-
ditional health indicators outside of what is available in the
SEER data for cancers of the Brain, CNS and Bone.
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