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Abstract

This work addresses the problem of breast cancer sub-type
classification using histopathological image analysis. We uti-
lize masked autoencoders (MAEs) based on Vision Trans-
former (ViT) to learn, through Self-Supervised Learning,
embeddings tailored to computer vision tasks in this do-
main. Such embeddings capture informative representations
of histopathological data, facilitating feature learning with-
out extensive labeled datasets. During pre-training, we inves-
tigate employing a random crop technique to generate a large
dataset from whole-slide images automatically. Additionally,
we assess the performance of linear probes for multi-class
classification tasks of cancer sub-types using the represen-
tations learned by the MAE. Our approach aims to achieve
strong performance on downstream classification task, by
leveraging the complementary strengths of ViTs and autoen-
coders. We evaluate our model’s performance on the BRACS
and BACH datasets and compare it with existing benchmarks.

Introduction
Histopathological image analysis plays a critical role in clin-
ical applications such as cancer diagnosis. Whole-slide im-
ages (WSIs) offer high-resolution views of entire tissue sec-
tions, enabling comprehensive evaluation by pathologists.
However, manual analysis of WSIs is time-consuming and
prone to inter-observer variability. Deep learning models
have emerged as powerful tools to automate histopatholog-
ical image analysis, offering the potential for faster, more
consistent, and potentially more accurate diagnoses (Van der
Laak, Litjens, and Ciompi 2021). Given the high-resolution
nature of WSIs, it is interesting to adopt a localized analysis
approach. This involves the extraction of image patches, in
order to address tasks like classification at the level of bag
of tissue regions; to this end, a multiple instance learning
framework could be naturally applied (Wang et al. 2024).
Furthermore, the reduced size of the extracted patches facili-
tate the application of deep learning models for computer vi-
sion tasks, including Convolutional Neural Networks (CNN)
(LeCun et al. 1989) and Vision Transformer (ViT) architec-
tures (Dosovitskiy et al. 2021), for various objectives such
as tissue classification and cell segmentation.
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CNNs have become the most used approach in this do-
main due to their ability to capture spatial relationships
within images (Srinidhi, Ciga, and Martel 2021; Hou et al.
2016). Architectures such as VGG, ResNet, and Inception
excel at learning hierarchical features directly from raw im-
age data, making them ideal for tasks like tissue classifi-
cation, tumor segmentation, and cell detection. However,
CNNs struggle to capture long-range dependencies (i.e.,
overall features) within complex tissues, especially when the
networks depth increases (Qiong et al. 2025).

A promising alternative is offered by Graph Neural
Networks (GNN). GNNs represent tissue structures as
graphs (Zhou et al. 2019; Aygüneş et al. 2020), where nodes
represent cells and edges depict their relationships. This al-
lows GNNs to effectively model complex interactions be-
tween cells, making them particularly useful for analyzing
cell-to-cell communication or studying the spatial distribu-
tion of different cell types. Alternatively, for tasks aiming
to classify multiple bag of regions under a single label, the
graph representation can be constructed at the patch level.
The downside of this kind of approach is the heavy pre-
processing step needed to build the required graph struc-
ture (Pati et al. 2022).

ViTs represent another interesting approach. Unlike
CNNs, ViTs process image patches directly, leveraging
transformer techniques to learn global dependencies across
the entire image (Gul et al. 2022; Wang et al. 2021a). This
approach proves advantageous for tasks requiring the analy-
sis of intricate tissue patterns, and overcomes the limitations
imposed by pre-defined filter sizes in CNNs.

However, independently of the adopted learning architec-
ture, because of the lack of large-scale annotated datasets,
the field of computer-aided medical imaging has witnessed
a widespread adoption of transfer learning especially from
ImageNet. As a matter of fact, histological images exhibit
complex and specific features, related to cellular structures,
tissue morphology and staining patterns, which may not be
suitably captured and dealt with by models pre-trained on a
very general dataset such as ImageNet (Filiot et al. 2023).

In this paper, we aim at exploiting encoding/decoding fea-
tures of ViT, in order to achieve a significant latent represen-
tation enabling an accurate classification of tissue regions
or WSIs via Self-Supervised Learning (SSL), avoiding the
need for large annotated datasets. We propose a reconstruc-
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tion framework called Histopathological Masked AutoEn-
coder (HMAE) followed by a simple classifier. The core
of the architecture is a ViT-based auto-encoder, where the
construction of the latent space is achieved through the self-
supervised objective of reconstructing the original image.
By masking a significant portion of image patches during
input, the encoder is forced to identify increasingly intri-
cate patterns in the remaining data to reconstruct the com-
plete image. Finally, a classification layer based on a simple
MLP is applied after the training of the transformer, in order
to output the predicted class. In this way, the ViT model is
never exposed to the image class labels during the learning
process. Figure 1 shows the proposed pipeline and architec-
ture that will be detailed in the following.

Methodology and Related Works
This section discusses the synergy between ViTs and mask-
ing techniques for image reconstruction using a Masked Au-
toencoding framework (MAE) (He et al. 2022). We start by
investigating the theoretical foundations of ViT and masked
image encoding, exploring their architectural details and
functionalities. Next, we describe the process of acquiring
and pre-processing a dataset suitable for MAE training. This
dataset will be extracted from whole slide images (WSI) ob-
tained from a reference dataset containing histopathologi-
cal images for patients under examination for breast cancer.
Finally, we discuss the methodology employed to leverage
the feature representations (embeddings) learned by the ViT
model for the task of cancer and sub-cancer classification.

Vision Transformers
Vision Transformers (ViTs) (Dosovitskiy 2020) represent a
paradigm shift in computer vision, achieving state-of-the-art
results on image classification tasks while departing from
the traditional dominance of CNNs. Unlike CNNs that rely
on hand-crafted filters for feature extraction, ViTs leverage
the transformer architecture, originally proposed in Natu-
ral Language Processing (NLP) (Vaswani 2017). The key
idea is to split the input image into fixed-size patches. Such
patches are then embedded into a vector representation and
fed into an encoder block. A self-attention mechanism is
then exploited, in order to learn long-range dependencies
between different parts of the image, allowing the model to
capture global context crucial for classification. A (masked)
auto-encoder architecture can the be built using a ViT as a
backbone.

Masked Encoder
The first step consists of dividing the image into equally
sized non-overlapping patches. Then, instead of using the
whole image, a given number of patches is randomly picked
without replacement, while the rest is hidden (masking) (He
et al. 2022). Patch selection is performed randomly across
the whole image, in order to avoid favoring the image center
(center bias).

As originally proposed in (He et al. 2022), we decided to
keep unmasked only a small percentage of the original im-
ages, namely 25% of all the patches. This is done in such a

way that it is hard for the model to guess what is missing
by just looking at the nearby patches. Having very few un-
masked patches allows us to design a more efficient system
for processing the image, as we will explain next. Finally,
the resulting masked image is used as input for a ViT en-
coder (see Figure 1).

Masked Decoder
After the encoding phase, we have two sets of information:
encoded data for the visible patches and special “mask to-
kens” (Devlin 2018). Such mask tokens represent missing
patches that the model needs to predict. A learned posi-
tional encoding is then added to both the encoded patches
and mask tokens.

This information is passed through another series of trans-
former blocks, acting as a decoder. The decoder is only used
during training to learn how to fill in the missing patches.
It does this by predicting the actual pixel values for each
masked area. The decoder’s output is a vector of pixel val-
ues representing a patch, and the final step is to put all these
patches back together to form a complete reconstructed im-
age. Again, this whole process is shown in Figure 1. To mea-
sure the accuracy of the reconstruction process we compare
the reconstructed image with the original one pixel by pixel
by using the mean squared error (MSE).

Reference Datasets
Having decided the learning architecture, we have then
considered some reference datasets for evaluating the
classification capabilities in terms of histopathological
images for breast cancer. The datasets we have considered
in the present work are described in the following.

BRACS. The BReAst Carcinoma Subtyping (BRACS)
dataset (Brancati et al. 2022) is a collection of digital
images used to study breast lesions. It includes 547
WSIs, which are high-resolution scans of entire tissue
samples. Additionally, 4539 smaller, more specific areas
called regions of interest (RoIs) are extracted from these
whole-slide images. Each WSI and its corresponding RoIs
are carefully examined and labeled by three pathologists.
These categories encompass three main lesion types, that is
three different classes: benign (healthy tissue), malignant
(cancerous tissue), and atypical. Further details are provided
by seven subcategories within these main types, allowing
for a more precise understanding of the specific lesion (see
Figure 2).

BACH. The BreAst Cancer Histology (BACH)
dataset (Aresta et al. 2019) is a significant resource
for researchers developing computer algorithms to auto-
matically diagnose breast cancer. It consists again of a
collection of digitized WSIs from breast biopsies. The
RoIs extracted from each WSI are labeled according to
four different classes: normal tissue, benign tumors, in situ
carcinoma (precancerous cells), and invasive carcinoma
(cancerous cells). The dataset contains a total of 400 RoIs
(100 RoIs for each class).
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Figure 1: HMAE architecture. (top) Tissue regions are randomly sampled from the original image (WSI). Subsequently, a
random mask is applied, occluding 75% of the image data. (down) The autoencoder architecture receives the masked image as
input and aims to reconstruct the hidden regions.

Sampling Pipeline
The ultimate goal is to distinguish tumors from healthy tis-
sues and to further classify tumor subt-ypes. This requires
the model to learn informative representations of the tissues.
To achieve this, we randomly extract a large number of un-
labeled image regions from each WSI. This process aims to
capture a diverse pool of tissue regions encompassing both
tumor and non-tumor areas.
The steps for extracting an image from WSI are listed below:

Region Selection. A square-shaped image patch is chosen
from the WSI. The side length of the region is determined
by sampling from a normal distribution. The mean and stan-
dard deviation of this distribution is computed based on the
size statistics of previously annotated RoIs in the BRACS
dataset.

Region Quality Control. The average variance is com-
puted for the pixel intensities within the extracted patch.
Since this is a measure of dispersion relative to the mean,
if the average variance is greater than a predefined thresh-
old, the region is considered informative and included in
the dataset. This step aims to exclude uninformative regions,
such as borders and background areas, which often exhibit
low variability with predominantly white or black pixels and
are irrelevant for the task.

Annotated RoI Classification
This task investigates the ability of the proposed model to
classify annotated RoIs within WSIs for tissue type classi-
fication. The approach is divided into two-steps. First, RoIs
are fed into the model, which utilizes MAE to generate infor-
mative feature vectors for the patches. Subsequently, a mean
aggregation of these patch-level embeddings is performed
in order to obtain a single vector for every RoI. These em-
beddings capture the essential characteristics learned by the
model from the data. Secondly, in order to carry out the

classification task, we resort to an MLP with one hidden
layer. The MLP utilizes the RoI embeddings as input fea-
tures, where each class corresponds to a specific tissue type
present within the RoIs.

In the following we will describe the experimental frame-
work that has been set to evaluate the approach with the ob-
jective that, by successfully classifying different tissue types
solely based on the embeddings, we can support the claim
that the learned features effectively capture relevant diag-
nostic information within the RoIs.

The advantage is that RoI representations can be learned
in a self-supervised manner without resorting to extensive
labeling. Labels are only needed to train the classifier: the
claim is that very few training examples are needed to per-
form the latter task when the embedding learned via SSL are
good representative of the original RoIs.

Experimental Framework
A first evaluation has concerned the capability of the method
previously described to correctly perform breast cancer sub-
type classification using histopathological hematoxylin and
eosin (H&E) tissue images. To perform this task we have
considered the BRACS dataset previously described. Fol-
lowing the BRACS group’s categorization (see Figure 2), we
have designed two multi-class classification experiments.

The first experiment differentiates cancerous from non-
cancerous tissues, additionally incorporating an intermedi-
ate class for atypical cases, resulting in a 3-class classifica-
tion problem. The second experiment extends the classifica-
tion by attempting to categorize the tissues to a lower granu-
larity level, namely into the distinct sub-types of the BRACS
hierarchy (i.e., a 7-class classification problem).

Moreover, in order to test the generalization capabilities
of the HMAE architecture we have considered the second
reference dataset previously introduced, namely the BACH
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Figure 2: Class taxonomy of BRACS dataset.

dataset containing 400 breast cancer histopathology images
classified into four categories. It is worth noting that the
HMAE model was not trained on this dataset; instead, it
was used in a frozen state to extract feature representations
(embeddings) from the images. The extracted embeddings
were then used to train an MLP classifier on the four
classification labels specific to the BACH dataset.

Experimental setup. In all the evaluations, the correspond-
ing dataset has been split into training, validation, and test
sets using a 70/10/20 split. To account for potential variabil-
ity, each classification experiment was run 100 times, and
the average value for each chosen metric was reported. The
MAE training was performed on a single Nvidia A40 GPU,
taking a total time of 32 hours to complete.

Cancer Classification
The first evaluation concerned the task of classifying tissues
from BRACS images as cancerous, non-cancerous or atyp-
ical. We have benchmarked HMAE with respect to several
state-of-the-art approaches to this problem and the results
are shown in Table 1, reporting the resulting AUC, and in
Table 2, reporting the resulting weighted F1-score (for a 3-
class classification task). For a correct comparison, all mod-
els employed a ViT-S/16 encoder architecture. This facili-
tated a comprehensive evaluation against various baseline
models, leveraging the groundwork established in (Zhang
et al. 2024).

These models use either an attention mechanism or a ViT
to correlate different region of a tissue image. They then
classify the tissue by considering the relationships between
these regions (the first two in the table perform the maxi-
mum and the average between the image patches embedding
respectively).

In both tables, the best performing approach is shown
in bold and the HMAE results are background colored.
Since HMAE does not perform as the best, we have tested
whether there are significant differences in the measured
performance scores with respect to the top performer ap-
proach (ACMIL). The p-values computed in a T-test at the
95% confidence level are reported in Table 3. Since p-values
are greater than 0.05 we can conclude that, with a 95%
confidence level, there is no significant difference between
HMAE and ACMIL in terms of both WF1-score and AUC.

Model AUC
Max-pooling 0.823±0.033
Mean-pooling 0.739±0.007
Clam-SB (Lu et al. 2021) 0.863±0.005
TransMIL (Shao et al. 2021) 0.841±0.006
DSMIL (Li, Li, and Eliceiri 2021) 0.816±0.028
DTFD-MIL (Zhang et al. 2022) 0.870±0.022
IBMIL (Lin et al. 2023) 0.871±0.014
MHIM-MIL (Tang et al. 2023) 0.865±0.017
ABMIL (Ilse, Tomczak, and Welling 2018) 0.866±0.029
ACMIL (Zhang et al. 2024) 0.888±0.010
HMAE 0.866±0.003

Table 1: Cancer Classification (3 classes): AUC

Model WF1-score
Max-pooling 0.596±0.029
Mean-pooling 0.522±0.038
Clam-SB (Lu et al. 2021) 0.631±0.034
TransMIL (Shao et al. 2021) 0.631±0.030
DSMIL (Li, Li, and Eliceiri 2021) 0.577±0.028
DTFD-MIL (Zhang et al. 2022) 0.612±0.080
IBMIL (Lin et al. 2023) 0.645±0.041
MHIM-MIL (Tang et al. 2023) 0.625±0.060
ABMIL (Ilse, Tomczak, and Welling 2018) 0.680±0.051
ACMIL (Zhang et al. 2024) 0.722±0.030
HMAE 0.704±0.009

Table 2: Cancer Classification (3 classes): weighted F1-
score

Sub-type Cancer Classification
A second evaluation has concerned the sub-type cancer clas-
sification in the BRACS dataset. This task represents an even
greater challenge than previous efforts due to the often sub-
tle morphological distinctions between some cancer types.
Furthermore, the inherent heterogeneity of the training data,
which includes a significant percentage of non-tumor tissue,
introduces an inherent class imbalance within the latent rep-
resentation space. The performance of our model was eval-
uated against the benchmark reported in (Stegmüller et al.
2023) under identical experimental conditions (7-class clas-
sification task, weighted F1-score for evaluation).

Most of the models used for this comparison differ from
those employed in cancer classification (reported on Table 1
and Tables 2) since benchmarks for cancer and sub-type can-
cer classification are different; in fact, models for cancer
classification (discussed in (Zhang et al. 2024)) would re-
quire training from scratch specifically for sub-type classifi-
cation, whereas our model does not. Results are presented in
Table 4 (best performance in bold and HMAE results back-
ground colored).

In this case, statistical significance analysis between
HMAE and the top-2 performer approaches reveals a sig-
nificant difference (at 95% confidence level) in the com-
puted WF1-scores (see Table 5). In order to get a deeper
understanding of such differences, we investigated the be-
havior, among the top-3 performers (ScoreNet, HACT-Net
and HMAE), in terms of F1-score on each label (i.e., nor-
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ACMIL HMAE p-value
F1-score 0.722 0.704 0.2598
AUC 0.888 0.866 0.1728

Table 3: Cancer Classification (3 classes): statistical differ-
ence (95% confidence)

Model WF1-score
CLAM-MB/B (Lu et al. 2021) 0.548±0.010
CGC-Net (Zhou et al. 2019) 0.436±0.005
Patch-GNN (Aygüneş et al. 2020) 0.521±0.006
TG-GNN (Pati et al. 2020) 0.559±0.001
CG-GNN (Pati et al. 2020) 0.566±0.013
HACT-Net (Pati et al. 2020) 0.615±0.009
TransPath (Wang et al. 2021b) 0.567±0.02
TransMIL (Shao et al. 2021) 0.575±0.007
ScoreNet (Stegmüller et al. 2023) 0.644±0.009
HMAE 0.578±0.015

Table 4: Sub-type cancer classification: weighted F1-score

mal tissue and sub-cancer categories). Results are reported
on Table 6 (best results shown in bold as usual).

Previous exposure to a larger proportion of non-cancerous
tissue during the training phase appears to have influenced
the HMAE prediction distribution. This is reflected by the
best F1-score achieved by HMAE for the “normal” class
compared to both the benchmark models and other classes
within this investigation. However, performance on the re-
maining classes, particularly the “Invasive” class with the
highest F1-score, remains comparable to previously tested
models.

In order to be more detailed about this aspect, we have
performed a statistical significance test also in this case, and
results are reported in Table 7. Bold values represent situa-
tions where HMAE performs either as significantly the best
(“normal” class) or with no significant difference with re-
spect to the other approaches. From these results we can con-
clude that, despite a potential bias towards non-cancerous
tissue introduced by the training data, the model retains in
general the ability to discriminate effectively between differ-
ent cancer sub-types, quite often in a comparable way with
respect to the best performing approaches.

Generalization Capabilities
To evaluate the representational capacity of our model, we
have investigated its ability to generalize to data coming
from completely unseen WSIs. This has been achieved by
assessing its performance on a classification task using a
dataset (BACH) not included in the training phase (tumor
and non-tumor tissues, further categorized into four distinct

ScoreNet HACT-Net
HMAE 2.21E−13 3.58E−05

Table 5: Sub-cancer Classification (7 classes): p-values at
95% confidence

Label ScoreNet HACT-Net HMAE
Normal 0.646±0.022 0.616±0.021 0.683±0.022
Benign 0.540±0.022 0.475±0.029 0.485±0.020
UDH 0.484±0.022 0.436±0.019 0.445±0.070
ADH 0.474±0.024 0.404±0.025 0.301±0.015
FEA 0.779±0.007 0.742±0.014 0.702±0.018
DCIS 0.629±0.020 0.664±0.026 0.633±0.019
Invasive 0.910±0.014 0.884±0.002 0.893±0.015

Table 6: Single class classification F1-score (based on top-3
models in Table 4).

Label ScoreNet HACT-Net
normal 0.0198 0.0198
benign 3.00E−04 0.5779
UDH 0.2976 0.8078
ADH 7.41E−32 6.00E−12
FEA 1.00E−14 6.00E−4
DCIS 0.0594 0.0594
Invasive 0.1047 0.2447

Table 7: Single-class performance: p-values between HMAE
and top-2 performers

classes). In particular, the latent representation learning is
performed using BRACS, then during inference each im-
age from BACH is used as input to the HMAE architec-
ture, the latent representation is produced and the classifier
(now trained on a subset of BACH for a 4-class classifica-
tion task) can finally predict the class. As in the previous
experiments, the corresponding dataset has been split into
training, validation, and test sets using an 70/10/20 split. Re-
sults (in terms of weighted F1-score) are shown on Table 8
(bold shows best result and HMAE results are background
colored). As usual, we tested the statistical significance of

Model BRACS → BACH
HACT-Net 0.402±.028
TransPath 0.618±0.048
TransMIL 0.465±0.100
CLAM-SB/B 0.575±0.036
ScoreNet 0.734±0.035
HMAE 0.687±0.032

Table 8: Testing Results on the BACH dataset (weighted F1-
score).

the difference in performance between HMAE and the top
performer (ScoreNet); Table 9 shows that there is no signifi-
cant difference between the approches, in terms of weighted
F1-score (on 4 classes). We can then conclude that also in
this case, HMAE performs at the top level.

Qualitative Evaluation
In order to have a better understanding of the quality of the
learned representations in the HMAE model, we have also
considered t-SNE dimensionality reduction on the reference
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Figure 3: t-SNE visualization of the region of interest (RoI) embeddings from the BRACS dataset. Each point represents a
sample, colored according to its class: benign (blue), malignant (red), and atypical (green). This visualization highlights the
clustering of different histopathological categories based on their learned feature representations.

Scorenet HMAE p-value
WF1-score 0.734 0.687 0.0522

Table 9: BRACS to BACH test: p-value

dataset BRACS and with the higher level of the class hi-
erearchy (benign, cancer and atypical tissue). Figure 3 pro-
vides a visualization of the embeddings in a 2D latent space.
Each embedding is plotted and colored according to its cor-
responding class label. Interestingly, even though the model
was trained unsupervised, a good degree of class separation
is already evident.

Finally, we have analyzed the attention maps, a crucial
component of the transformer architecture. Attention maps
reveal which parts of the input image the model focuses on
the most. By visualizing them, we can understand which im-
age regions are most relevant for the model’s predictions.
Figure 4 showcases four original images alongside the at-
tention maps generated by the final layer of the MAE in
the HMAE architecture. Notably, even during unsupervised
training, the model appears to differentiate between connec-
tive and glandular tissue. This distinction likely arises be-
cause glandular tissue is structurally more complex, requir-
ing the model to retain more information for reconstruction.

Discussion and Future Works
In this work we have presented a masked autoencoder archi-
tecture using a Vision Transformer (ViT) as the embedding
module, focusing on the representation and classification of
histopathological images for breast cancer diagnosis. The
model effectively generates informative representations of
input images by masking random regions and reconstructing

the masked areas in an SSL setting. Applied to histopatho-
logical breast cancer images, the model successfully cap-
tures relevant features from both tumor and non-tumor re-
gions. These learned representations can then be effectively
used as input to a classification model, achieving accurate
cancer type and sub-type identification.

We have benchmarked the model with some of the state-
of-the-art approaches proposed for the same task and eval-
uated on the same reference datasets. The HMAE approach
exhibits performance at the same accuracy level of the most
performing tested techniques. It is worth noting that the la-
tent space of the MAE is only optimized for image recon-
struction, and not specifically for classification tasks un-
like the benchmark models. This observation strengthens the
positive outcomes and underscores the efficacy of employ-
ing random input masking. Furthermore, the model’s gener-
alization capabilities suggest the potential for being applica-
ble across diverse breast cancer datasets.

Moreover, due to the large spatial resolution of WSIs, data
augmentation can be easily adopted. By extracting a larger
number of random regions from each WSI, the dataset size
can be significantly expanded while minimizing redundancy
within the generated images. This step would be important
to achieve a more balanced representation of cancerous ver-
sus non-cancerous tissues within the training data, without
the need for large labeled datasets. Because of the basic pe-
culiarities of masked image modeling, there is a wide expec-
tation to improve the performance of visual models such as
HMAE, both in terms of architecture and data scaling, espe-
cially in the field of histopathology (Xie et al. 2023; Filiot
et al. 2023).

In future works, we plan to explore the impact of ex-
panding the training dataset to enhance the model’s ability
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Figure 4: Self-attention heatmaps over histopathology images. The left column in each pair shows the original histopathology
image, while the right column presents the corresponding heatmap, where warmer colors (red, yellow) indicate regions of high
attention.

to differentiate cancerous and non-cancerous regions. Ad-
ditionally, to assess the model’s generalizability, we propose
training it on a collection of diverse datasets. Finally, we also
aim to explore more in depth the dataset augmentation given
by the random cropping of the WSIs by experimenting with
more sophisticated methods that could potentially improve
the actual model performance.
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