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Abstract

Alzheimer’s disease (AD), a complex neurodegenerative dis-
order, presents significant challenges for early and accurate
diagnosis due to its multifactorial nature. This study intro-
duces a novel approach to fine-tuning large language mod-
els (LLMs) for classifying AD-related dementia stages, us-
ing genetic and contextual demographic data. By harness-
ing the unique ability of LLMs to capture complex relation-
ships in high-dimensional data, we developed a prompt struc-
ture that integrates genetic information, such as single nu-
cleotide polymorphisms (SNPs), with patient-specific factors
like age, sex, and clinical scores. Extensive experiments on
the ADNI dataset demonstrate the superior performance of
LLM-based methods. Our findings highlight the crucial role
of high-quality prompts and carefully curated data in improv-
ing model accuracy. This research lays the groundwork for
applying LLMs in precision medicine, providing a scalable
and interpretable framework to address complex biomedical
challenges, extending beyond AD.

Introduction
Alzheimer’s disease (AD) is a progressive neurodegenera-
tive disorder and the leading cause of dementia worldwide,
affecting over 55 million people globally and posing signif-
icant challenges to healthcare systems and society at large
(Better 2023). Characterized by cognitive decline, memory
loss, and functional impairment, AD is a complex and mul-
tifaceted disease with both genetic and environmental un-
derpinnings. Despite decades of research(Tang et al. 2024),
early and accurate diagnosis of AD remains a formidable
challenge, primarily due to its heterogeneity and the in-
terplay of various risk factors, including genetics, demo-
graphics, and clinical presentations. Current diagnostic ap-
proaches(Tang et al. 2023), while improving, often rely on
labor-intensive neuroimaging, invasive cerebrospinal fluid
analysis, or subjective clinical assessments, underscoring the
urgent need for computational tools that can integrate multi-
modal data for improved diagnostic precision.

Genetic factors play a pivotal role in the etiology of AD.
Variations in several genes, most notably APOE, have been
strongly associated with disease risk, with carriers of the
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APOE-ϵ4 allele exhibiting a significantly higher likelihood
of developing AD (Liu et al. 2013). However, genetic pre-
dispositions alone do not fully explain disease onset or pro-
gression, necessitating the consideration of additional fac-
tors such as age, sex, and comorbid conditions. For example,
age remains the strongest risk factor for AD, with preva-
lence doubling approximately every five years after age 65
(Sperling et al. 2011). Sex differences in AD prevalence
and progression are also well-documented, with women be-
ing disproportionately affected (Mielke 2018). Furthermore,
clinical characteristics such as depressive symptoms, often
assessed through tools like the Geriatric Depression Scale
(GDS), have been identified as potential contributors to cog-
nitive decline and dementia risk (Saczynski et al. 2010).
These complex interactions between genetic, demographic,
and clinical factors necessitate integrative analytical frame-
works capable of uncovering subtle patterns and relation-
ships in multidimensional datasets.

Recent advances in artificial intelligence (AI) and ma-
chine learning (ML) have opened new avenues for address-
ing such challenges, particularly in leveraging vast amounts
of biomedical data for disease prediction and classification.
Large language models (LLMs), originally designed for nat-
ural language processing tasks, have emerged as transforma-
tive tools with broad applicability across domains, including
biomedical research (Brown et al. 2020; Lee et al. 2020).
These models, pre-trained on massive text corpora, pos-
sess the ability to generalize knowledge and learn domain-
specific patterns when fine-tuned on specialized datasets.
While LLMs have primarily been applied to tasks involving
text-based data, their flexibility and capacity for contextual
reasoning position them as promising candidates for analyz-
ing structured biomedical data, such as genetic and pheno-
typic information. However, applying LLMs to structured
data in the context of disease diagnosis remains an underex-
plored area.

This study introduces a general paradigm for fine-tuning
LLMs to diagnose AD using genetic data in combination
with contextual prompts such as age, sex, and GDS scores.
By leveraging the inherent capacity of LLMs to model com-
plex interactions, our approach enables the extraction of
meaningful patterns across genetic and phenotypic domains.
The inclusion of contextual prompts further enhances the
model’s ability to provide nuanced predictions that reflect
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individual variability. This paradigm not only builds on the
growing body of work demonstrating the utility of LLMs in
biomedical applications but also addresses critical gaps in
applying these tools to structured data analysis for disease
diagnosis.

The contributions of this study are threefold. First, it
demonstrates the feasibility of adapting general-purpose
LLMs to structured biomedical data, specifically for the di-
agnosis of AD. Second, it highlights the importance of incor-
porating demographic and clinical context to enhance model
performance and relevance to real-world scenarios. Third, it
establishes a methodological foundation for future research
at the intersection of AI and precision medicine. By bridg-
ing the gap between general-purpose AI tools and domain-
specific biomedical challenges, this work aims to advance
the use of AI in healthcare and contribute to the development
of more personalized and accurate diagnostic tools. Through
this effort, we aim to address key limitations in existing di-
agnostic methods for AD and demonstrate the potential of
LLMs as powerful allies in the fight against neurodegener-
ative diseases. Beyond AD, the paradigm presented in this
study has broader implications for applying LLMs to other
complex diseases, fostering innovation in AI-driven preci-
sion medicine.

Related Works
Large Language Models
The evolution of natural language processing (NLP) and AI
models has followed a transformative trajectory, progress-
ing from rule-based systems to statistical approaches, and
culminating in neural network architectures (Josh Achiam
2024). A pivotal shift occurred with the introduction of
self-attention mechanisms and Transformer-based architec-
tures (Vaswani 2017), which catalyzed the rise of pre-trained
language models (PLMs). These models learn generalized
linguistic patterns from vast corpora through unsupervised
training, enabling robust performance across diverse NLP
tasks such as multiple-choice question answering (Robin-
son, Rytting, and Wingate 2023), narrative generation (Cao
et al. 2023), and commonsense reasoning (Yang et al. 2023),
while reducing overfitting risks.

Recent years witnessed rapid advancements in large lan-
guage models (LLMs), exemplified by GPT-3 (Brown et al.
2020), PaLM (Aakanksha Chowdhery 2022), LLaMA (Tou-
vron et al. 2023), Megatron-Turing NLG (Smith et al. 2022).
This growth has been driven by exponential increases in
training data volume and computational power, with empir-
ical studies confirming that model performance scales pre-
dictably with parameters and dataset size—a phenomenon
formalized as scaling laws (Kaplan et al. 2020). LLMs now
represent a cornerstone of AI research, surpassing smaller
models in text comprehension and generation fidelity. Their
ability to streamline scientific inquiry, accelerate discovery,
and bridge interdisciplinary gaps positions them as transfor-
mative tools for both technical and social sciences.

AD Prediction Based on LLM with Genetic Data
The application of large language models (LLMs) to ge-
netic data for predicting brain dementia states (e.g., AD,

<Input>:
0000, 10, 0, 01110011111, 001, 0111101112111111001000000010112100002010,
0002000010002010000000001001110020, 20112, 0, 00, 01, 2121200000011110
01010, 11200, 101111100000000021101, 01000, 01, 112, 00201201100100, 22,
1111, 1, 000000, 1111, 221, 0, 10, 0100001000, 01100001111111000101, 1001110,
2201, 21011101, 22, 1, 0, 10, 000, 2110001, 2, 20020, 000, 0100, 2, 1, 0, 01, 10,
10000000, 022000020000001111001001, 0011101100200010000101011011000
100011110001100100101011010110001011101110001100020010012101122100,
00, 1100, 0102010100000011020111011110101011110100101111000000001000
00200200220111, 00010011001000211, 111011220, 111000222001, 01, 1, 0, 0,
111111, 010010012010110100110001100102112012002101112000010100110001,
1, 010, 021, 0020, 111122101000, 2, 0000, 121, 20000000000, 0012001020000,
01002121, 0001, 120010111101111000000100, 2100, 011110001000, 211000000
00001210202000000120011101100001000010111001001000200110000012110
001110011101222210201111120020201121001000101011112110100222101101
110110000001101100111000000002000001100110001021101110, 0, 0, 000, 010,
0, 2110, 00, 111, 02, 110101120201001111, 00011020110100001000010100, 00, 2,
000, 0, 2, 0020000, 01000000101220000000001020010010000000000100200200,
0, 0, 012, 00101, 201001, 0011121010, 2, 01001010111000002011, 0, 0.
Patient information: The individual is a 68.1-year-old and sex is F. GDS score is 1.0.

<Instruction>: Given a series of gene segments and patient demographic 
information, tell me the label of the patient.

<Output>: The label is MCI.

Figure 1: An example of our designed prompt consists of
three parts. The <Instruction> part is presented in the vio-
let box, the <Input> part is presented in the red box, and the
<Output> part is presented in the blue box. The <Input>
part includes SNP segments and subject demographic infor-
mation, where commas are used to separate different genes,
as presented in the green block.

mild cognitive impairment or MCI) has gained significant
attractions in recent years. A few existing studies focus
on encoding high-dimensional genetic data, such as sin-
gle nucleotide polymorphisms (SNPs), into meaningful em-
beddings through LLMs (i.e., DNA-BERT (Ji et al. 2021)
and SNP2Vec (Alipanahi et al. 2015)), which have demon-
strated improved disease classification accuracy by leverag-
ing contextual information from genetic sequences. Mean-
while, multimodal fusion methods integrate genetic data
with other modalities, such as neuroimaging, to capture the
complementary information across data sources (Feng et al.
2023; Liu et al. 2024). Some other interaction-based ap-
proaches analyze genetic interactions, such as SNP-SNP or
gene-gene networks, using LLMs with graph neural net-
works to uncover complex patterns underlying AD progres-
sion (Permana, Beatson, and Forde 2023; Xiao, Wang, and
Wan 2024) Additionally, some progression prediction meth-
ods employ LLMs for longitudinal modeling of genetic and
clinical data, focusing on predicting long-term transitions
between cognitive states (e.g., from cognitively normal or
CN to AD through different cognitive impairment stages)
(Machado Reyes et al. 2024; Danter 2024).

Methodology
In this section, we start with presenting the elaborated
prompt specifically designed for genetic data to fine-tune
Large Language Models (LLMs). Subsequently, we detail
the fine-tuning process by utilizing the crafted prompts.

Prompt Design
The Alpaca format (Taori et al. 2023), an instruction-
response dataset format, is utilized to standardize our con-
structed prompts. Specifically, the constructed prompt con-
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LLM

<instructions> <SNP segments><subject demographics 
& clinical metrics>

<output>: The subject is AD.

Figure 2: Diagram illustrating the architecture of LLM with
the proposed prompt.

sists of three parts including instruction, input and output.
For the instruction part, we design a generic prompt that
guides the LLM to classify input data. The input part in-
cludes a series of gene segments with corresponding SNP
values. To ensure that different gene segments are not com-
bined during tokenization, we use commas to distinctly sep-
arate these segments associated with different gene names.
Additionally, the input part also includes a dedicated field
to provide the demographic information of each subject, ap-
pended at the end of the gene segments. The output section
describes the classification labels assigned to each subject.
We present an example of our designed prompt in the Fig-
ure 1. The specific task of LLMs involves utilizing the in-
struction and input parts to produce the corresponding out-
put section. During the inference phase, the generated text
is parsed to extract the predicted label (i.e., different disease
states) for each test sample, which is then compared against
the groundtruth label to calculate the accuracy of the gener-
ated output texts.

LLM Fine-tune
The objective of fine-tuning a Large Language Model
(LLM) is to adapt the pre-trained model (i.e., LLMθ) for
a specific downstream task by updating its parameters θ us-
ing task-specific annotated data. As shown in Figure 2, the
input of the LLMs are the instruction and input sections of
our designed prompts, and the target is the output section of
the prompts. We first tokenize the input and output of LLM
as follows:

X = Tokenizer(< instruction, input >)

Y = Tokenizer(< output >), (1)

where X = {x1, x2, ..., xn} is a sequence of input tokens
and Y = {y1, y2, ..., ym} is the target tokens. The LLM
learns to predice the conditional probability of the target
given the input:

Pθ(Y |X) =
m∏
t=1

Pθ(yt|y<t, X), (2)

where yt is the token at position t in the target token se-
quence. y<t represent all tokens before position t. The fine-
tuning process aims to optimize the model by minimizing

the negative log-likelihood (NLL) loss on the target token
sequence, which is equivalent to minimize the following
cross-entropy loss:

L(θ) = − 1

N

N∑
i=1

mi∑
t=1

logPθ

(
y
(i)
t |y(i)<t, X

(i)
)
, (3)

where N is the number of training samples, mi is the length
of the target token sequence for the i− th sample. X(i) and
Y (i) are the input and target token sequences for the i − th
sample. In the inference phase, the fine-tuned model LLMθ∗

generates the target sequence Y given the input sequence X
by maximizing the likelihood of the output token sequence.
Particularly, the LLM generates tokens position by position.
At each position t, the next token yt is predicated as follow:

yt = argmax
y∈V

Pθ∗(y|y<t, X) (4)

Where V is the vocabulary of the model, and Pθ∗(y|y<t, X)
denotes the conditional probability of the token yt given the
input token sequence and the previously generated tokens
y<t.

Experiments and Results
Dataset
The genetic data from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database were used to evaluate our
framework, consisting of 1998 subjects (mean age: 73.43±
7.17 years, 927 women). Genotype data were obtained from
1079 Single Nucleotide Polymorphisms (SNPs) generated
using Illumina genotyping platforms. Each SNP represents
the genotype encoding at the given locus, indicating the al-
lele dosage for each subject. Specifically, SNP = 0 indi-
cates homozygosity for the reference allele, SNP = 1 indi-
cates heterozygosity, and SNP = 2 indicates homozygosity
for the alternate allele at the given locus. Details regarding
the genotyping protocols and quality control can be found
in (Saykin et al. 2010). SNPs were annotated with their cor-
responding genes using their chromosomal positions based
on Ensembl gene annotations (Yates et al. 2016). Subjects
were categorized into five groups based on dementia pro-
gression: cognitively normal (CN), significant memory con-
cern (SMC), early mild cognitive impairment (EMCI), mild
cognitive impairment (MCI), late mild cognitive impair-
ment (LMCI), and Alzheimer’s Disease (AD). Meanwhile,
Alzheimer’s disease (AD)-related clinical metrics, including
the Mini-Mental State Examination (MMSE) scores (Fol-
stein, Folstein, and McHugh 1975), the Clinical Dementia
Rating (CDR) scores (Morris 1993) and the Geriatric De-
pression Scale (GDS) scores (Yesavage et al. 1982), were
also provided for each subject.

Implementation Details
Data Augmentation. Since the information provided by
each SNP sequence is independent of the order of the associ-
ated genes, we augmented our dataset by randomly permut-
ing the gene order while keeping the corresponding SNPs
unchanged. For instance, if SNPi1 , ..., SNPiK are asso-
ciated with Genei and SNPj1 , ..., SNPjK are associated
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Model MLP Llama3 Qwen2.5 Mistral
Acc.(%) 26.23 88.33 91.74 84.31

Table 1: Classification accuracy (%) of MLP and different
LLMs on the six-class dementia states.

with Genej , the order of Genei and Genej was shuffled in
the augmented data. However, the order of SNP sequences
within each gene (e.g., SNPi1 , ..., SNPiK ) remained unal-
tered. Utilizing this augmentation strategy, the dataset was
substantially expanded including 50, 000 training samples
and 10, 000 testing samples.

Experimental Setting. Three pretrained models are se-
lected to conduct our experiments, including Llama3-8B-
instruct (Touvron et al. 2023), Qwen2.5-7B (Yang et al.
2024) and Mistral-7B (Jiang et al. 2023). We train them
on 8× A100 GPUs with full parameters, using LLAMA-
Factory. The number of epochs is 5 and the consumption
time to fine-tune each model is about 5 hours.

Differences Between Three Selected LLMs Llama 3 (up
to 405B parameters) excels in scalability and multimodal
integration with a decoder-only transformer and Grouped-
Query Attention (GQA), making it ideal for enterprise
NLP. Qwen 2.5 specializes in mathematical reasoning and
multilingual processing (29+ languages), leveraging YaRN-
enhanced RoPE embeddings for a 128K-token context. Its
domain-specific variants (e.g., Qwen2.5-Math/Coder) en-
hance structured data analysis. Mistral, with a 7B Sparse
Mixture-of-Experts (MoE) design, achieves 6× faster in-
ference via top-2 expert routing, optimizing for real-time
and edge deployment. Each model reflects distinct priori-
ties: Llama 3 for scalability, Qwen 2.5 for domain-specific
tasks, and Mistral for efficiency.

Comparative Experiment
In this experiment, we compare the performance among dif-
ferent LLMs for a 6-class classification task including CN,
SMC, EMCI, MCI, LMCI, and AD. Additionally, we also
evaluate the effectiveness of LLMs in comparison to tradi-
tional deep learning approach (i.e., Multilayer Perceptron or
MLP) on this task. Since the MLP is not able to embed the
patient demographic information, we only include SNP seg-
ments in this comparative experiment for a fair comparision.
The classification results, summarized in Table 1, demon-
strate a significant performance gap between traditional deep
learning methods and Large Language Models (LLMs) for
the six-class classification task. The MLP network achieves
an accuracy of 26.23%, indicating its limited capability in
handling the complexity of genetic data and demographic
features. In contrast, LLMs exhibit superior performance,
with Llama3-8B-instruct achieving an accuracy of 88.33%,
Mistral-7B obtaining the accuracy of 84.31%, and Qwen2.5-
7B reaching the highest accuracy of 91.74%. This improve-
ment highlights the ability of LLMs to leverage their pre-
trained knowledge and capture intricate patterns in the input
data. Furthermore, among the LLMs, Qwen2.5 achieves the
best classification performance.

Impact of Prompt Quality on Dementia Prediction
To investigate the impact of prompt quality on model perfor-
mance, we designed three experiments with different prompt
variants. The first prompt variant included only SNP seg-
ments, representing a baseline that focuses solely on ge-
netic information. The second prompt variant extended this
by incorporating subject demographic information including
age and sex, which represents a high-quality prompt. The
last prompt variant further included dementia-related clini-
cal metrics such as MMSE scores, GDS scores, and CDR
scores. However, these clinical scores are incomplete, where
part of them are missing and set to “NaN” during the data
collections.

The results (see Table 2) demonstrate that prompt qual-
ity plays a pivotal role in improving model performance.
Compared with the first prompt variant, the second prompt
variant, which combined SNP segments with age and sex
information, achieved the best classification performance,
suggesting that demographic context enhances the predic-
tive power of genetic data. The third prompt variant, despite
including the most comprehensive information, yielded the
poorest results due to the presence of missing data. These
results underscore that incomplete or noisy data in prompts
may hinder learning process and reduce performance of the
LLMs, which highlights the importance of designing well-
curated, high-quality prompts for fine-tuning LLMs in ge-
netic and clinical prediction tasks.

Model Llama3 Qwen2.5 Mistral
∗ † ‡ ∗ † ‡ ∗ † ‡

Acc.(%) 88.33 94.89 87.91 91.74 96.64 89.78 84.31 82.89 94.24

Table 2: Classification accuracy for dementia states with
different prompt variations. ∗ indicates the results using
prompts with only SNP segments. † indicates the results us-
ing high-quality prompts that include SNP segments, sex,
and age information. ‡ indicates the results using prompts
that include SNP segments, sex, age, and incomplete clini-
cal metrics (i.e., MMSE, GDS, and CDR).

Impact of Prompt Components on Dementia
Prediction
To identify which components of the prompt have the great-
est impact on classification accuracy, we experimented with
different prompt variants incorporating different clinical
metrics. Building on the findings from the previous section,
which highlight the importance of prompt quality, we first
excluded all data samples with incomplete clinical metric
scores. Demographic information, including sex and age,
was shown to significantly enhance the performance of our
LLM models, and thus we used SNP segments combined
with sex and age as the basic prompt. To explore additional
influences, we introduced the AD-related allele, APOE-ϵ4,
into the basic prompt to create the first prompt variant. Ad-
ditionally, we incorporated a depression-related metric (i.e.,
GDS scores) into the basic prompt to form another prompt
variant. The results (see Table 3) demonstrate that adding
GDS information significantly improved classification per-
formance, however, the information of APOE-ϵ4 decreased
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the classification accuracy.
The negative impact of introducing the APOE-ϵ4 allele

may arise from the dataset containing a disproportionate
number of individuals with specific APOE allele combina-
tions, potentially introducing bias into the model’s predic-
tions. This is particularly relevant as APOE-ϵ4 carriers are
overrepresented within the AD population. Depression is a
well-established risk factor for both cognitive decline and
dementia (Ownby et al. 2006; Steffens and Potter 2008). In-
corporating depression-related metrics, such as GDS scores,
into the prompt enhances classification accuracy for several
reasons. First, depression-related metrics capture both emo-
tional and cognitive symptoms, which often overlap with
early manifestations of Alzheimer’s Disease, offering addi-
tional predictive signals. Second, unlike APOE alleles that
primarily represent genetic predisposition, GDS scores pro-
vide dynamic, symptom-based insights into disease progres-
sion. This complementary information enriches the context
available for LLMs to learn from, leading to more nuanced
and accurate classifications.

Model Llama3 Qwen2.5 Mistral
∗ † ‡ ∗ † ‡ ∗ † ‡

Acc.(%) 91.57 87.91 96.91 96.65 95.80 97.92 90.79 88.41 92.90

Table 3: Classification accuracy for dementia states with dif-
ferent prompt variations. ∗ indicates the results using basic
prompts including SNP segments, seg and age information.
† indicates the results of basic prompts with APOE allele. ‡
indicates the results of basic prompts with GDS scores.

Conclusions
In this study, we demonstrated the potential of fine-tuning
LLMs for AD diagnosis using genetic, demographic, and
clinical data. By integrating SNP sequences with patient-
specific contextual information such as age, sex, and clini-
cal metrics, our approach achieved significant improvements
in classification accuracy across multiple dementia stages.
Moreover, our analysis revealed the critical influence of
prompt quality on model performance. Incorporating demo-
graphic and clinical context substantially enhanced predic-
tive accuracy, while incomplete or noisy data components,
such as missing clinical scores, hindered the effectiveness
of the models. These findings underscore the importance of
designing well-curated, high-quality prompts tailored to the
specific requirements of biomedical tasks.

Beyond AD, the proposed framework is flexible for
broader applicability to other complex diseases, paving the
way for advancements in AI-driven precision medicine.
Future research should explore additional data modalities,
such as neuroimaging, to further enrich the diagnostic ca-
pabilities of LLMs and address remaining challenges in
multimodal data integration. By bridging the gap between
general-purpose AI and domain-specific applications, this
work contributes to the development of scalable and person-
alized healthcare solutions.
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