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Abstract

The concepts of convolutional neural networks (CNNs) and
multi-agent systems are two important areas of research in ar-
tificial intelligence (AI). In this paper, we present an approach
that builds a CNN-based colony of AI agents to serve as a
single system and perform multiple tasks (e.g., predictions
or classifications) in an environment. The proposed system
impersonates the natural environment of a biological system,
like an ant colony or a human colony. The proposed colony
of AI that is defined as a role-based system uniquely con-
tributes to accomplish tasks in an environment by incorporat-
ing AI agents that are fast learners, detailed learners, and or-
ganized learners. These learners can enhance their localized
learning and their collective decisions as a single system of
colony of AI agents. This approach also enhances the diver-
sity and quality of the colony of AI with the help of Genetic
Algorithms and their crossover and mutation mechanisms.
The evolution of fast, detailed, and organized learners in the
colony of AI is achieved by introducing a unique one-to-one
mapping between these learners and the pretrained VGG16,
VGG19, and ResNet50 models, respectively. This role-based
approach creates two parent-AI agents using the AI models
through the processes, called the intra- and inter-marriage of
AI, so that they can share their learned knowledge (weights
and biases) based on a probabilistic rule and produce diversi-
fied child-AI agents to perform new tasks. This process will
form a colony of AI that consists of families of multi-model
and mixture-model AI agents to improve diversity and qual-
ity. Simulations show that the colony of AI, built using the
VGG16, VGG19, and ResNet50 models, can provide a single
system that generates child-AI agents of excellent predictive
performance, ranging between 82% and 95% of F1-scores, to
make diversified collective and quality decisions on a task.

Introduction
In artificial intelligence (AI) discipline, one of the emerg-
ing topics is the multi-agent AI systems that integrate the
concepts of multi-agent adaptive learning systems (Boutilier
1996; Newton et al. 2021). The agents in a multi-agent AI
system are generally unstructured and formed by complex
functional and logical characteristics that are difficult to
learn, understand, and interpret (Luzolo et al. 2024; Foer-
ster et al. 2018). The AI agents are goal-driven members of
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a multi-agent system; hence, their inherent communication
structures are explicitly defined to form a globally inspired
interactions and making decisions (e.g., predictions or clas-
sifications). Hence, a multi-agent AI system usually fails to
efficiently integrate localized information to make collective
decisions. In other words, they do not fully utilize the bene-
fits of the concepts of a decentralized framework (Ferber and
Weiss 1999). Therefore, we need a multi-agent AI system
that integrates families of AI agents that operate on a local-
ized set of simple rules for collective decision making. Most
recently, a concept of colony of AI has been proposed in AI
research literature (Suthaharan 2024). This framework mim-
ics biological colonies, like ants, bees, and humans (Dorigo
and Blum 2005). Apparently, the colony of AI operates on
a set of simple rules and generates families of AI agents to
form a colony and make collective and quality decisions.

The idea of this approach is to allow two AI agents, called
the parent-AI agents, to share their knowledge (learned
parameters) and produce child-AI agents. This process is
called the marriage of AI agents, and it is performed using
Genetic Algorithms (GAs) and their crossover and mutation
mechanisms for the evolution of a colony of AI (Holland
1992). In essence, the marriage of AI refers to the process
of knowledge sharing between parent-AI agents to produce
a child-AI agent with a new knowledge. Hence it forms a
family of AI agents and makes decentralized decisions in
the colony of AI. One of the drawbacks of this foundational
framework is that it is only a single-model framework of
convolutional neural networks (CNNs). As such it restricts
the generalization and adaptivity of an AI colony. As a single
model it implements a pretrained VGG16 model that is built
on the fundamental logic of a CNN model (Simonyan and
Zisserman 2014; Krizhevsky, Sutskever, and Hinton 2017).
This single-model colony of AI is extremely useful in the
era of multi-agent artificial intelligence, because of its sim-
plicity, knowledge localization, and the ability to make col-
lective decisions with simplified rules. However, to meet the
requirements of a colony, it must be upgraded to a role-based
framework, in addition to a rule-based framework.

In this paper, we propose an approach to establish a
colony of AI that consists of families of multi-model and
mixture-model AI agents with an enhanced diversity and
quality in the AI colony. This approach will promote the
collective decision strategy and the adaptive intelligence ap-
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Figure 1: Overview of the concept of colony of AI.

proach in the colony (Stone and Veloso 2000). Our proposed
technique will include the families of fast learner AI agents,
detailed learner AI agents, and organized learner AI agents
to the colony and establish a multi-model colony of AI. In
the multi-model colony of AI, a concept of intra-marriage
of AI agents is defined to allow the sharing of knowledge
between two agents of the same learner type, produce child-
AI agents of the same learner type, and form families of
AI agents. This approach enhances sample (localized) di-
versity (Hazra and Anjaria 2022) and quality within each
type of learners. The approach also includes mixture-models
to establish families of mixture-model AI agents in the AI
colony. A concept of intermarriage of AI agents is defined
to allow the sharing of knowledge between two agents of
different learner types, produce child-AI agents of multiple
learner types and enhance diversity and quality in the pro-
posed colony of AI framework. Thus, as a single system, the
proposed colony of AI can control overfitting problems.

Methods
A colony of AI may be defined as follows: Suppose an AI
agent A1 is generated from a pretrained model M1 (we may
compare it with genetics) where the AI agent A1 can per-
form a task T1 in an environment E as an agent of the model
M1. The environment E generally can have distinct tasks;
hence, the agent A1 may be trained on a different task T2

within the environment E. If the agent A1 is retrained on a
different task, then it becomes incapable of performing the
previous task T1 that was originally trained on. Therefore,
the training of that nature may not be suitable for an envi-
ronment that consists of many tasks and AI agents. To meet
such conditions, we need a colony of AI that understands the

local environment to collectively make decisions as a single
AI system (Stone et al. 2010). A scenario is presented in
Figure 1 that illustrates the proposed concepts of colony of
AI. For example, as illustrated in this figure, let’s assume
that we have two AI agents A1 and A2 of a pretrained model
M1, where the agents perform the same task T1 by inheriting
the behavior of the model M1. Then the agents A1 and A2

go through the process of “marriage of AI” that adapts the
operations of crossover and mutation of Genetic Algorithms.

In this process, the model weights and bias parameters
are shared, based on a probabilistic rule-based mechanism
to produce a child-AI agent D1 to form a single family F1,
as shown in Figure 1. Now the child-AI agent D1 can be
trained on a different task T , say T ∈ {T1, T2, . . . , Tp},
to expand the family to perform multiple tasks. Hence, the
single-model approach delivers a mechanism to evolve the
colony of AI as a single-model multi-agent families that
mimics biological systems. However, the environment may
experience issues related to the optimization of diversity and
quality (Jaramillo, Squires, and Togelius 2024) of the colony
of AI because of the heterogeneity, scalability, and the un-
structured nature of the tasks that are generated by the large
number of data sources in an environment. To address such
complexity issues, we propose to establish a role-based ap-
proach, in addition to the rule-based approach. This role-
based approach introduces fast learners, detailed learners,
and organized learners among AI agents to build a colony of
AI that satisfies the diversity and quality requirements while
maintaining a path to optimality. Hence, the proposed ap-
proach combines three types of models: single-model colony
of AI, multi-model colony of AI and mixture-model colony
of AI that will make the colony more efficient and effective.



PREPRINT
VERSION 

Do Not 
Distribute

PREPRINT
VERSION 

Do Not 
Distribute

Figure 2: Fast learner: VGG16 architecture and the understanding of knowledge sharing by AI agents. Note: dim-reduc repre-
sents dimensionality reduction, rel-feature represents relevant features, and inv-prop represents invariant properties.

Multi-model colony of AI
It is defined as a colony that consists of multiple single-
model families as shown in Figure 1: single-model fam-
ily SF1, single-model family SF2, and single-model fam-
ily SF3. For example, single-model family SF1, allows the
intra-marriage between the agents of the same model type
M1, but in our proposed colony of AI framework, it repre-
sents a fast learner family of AI agents. Similarly, the single-
model family SF2 represents a detailed learner family of AI
agents, and the single-model family SF3 represents an orga-
nized learner family of AI agents. The goal of adding these
three types of families is to increase diversity and quality
of the colony of AI as a single system. In the proposed ap-
proach, we respectively generate a one-to-one mapping be-
tween VGG16, VGG19 (Simonyan and Zisserman 2014),
and ResNet50 (He et al. 2016) and the fast, detailed, and
organized learners. A family in the colony of AI is repre-
sented by 5-tuples (p, q, r, s, t), where the parameters p and
q represent parent-AI agents, and r, s, and t represent child-
agent, data-size, and training-duration, respectively.

Fast learners The fast learners pay less attention to details
while learning from data. Hence, they are good with data
that are not that complex. They learn fast from simple data
because the complex data may have many hidden details
that can slow down their learning rate. Their goal is to com-
plete the tasks as fast as they can with an effort to achieve
good performance as much as possible. Therefore, in our ap-
proach, we map an AI agent derived from a VGG16 model

to a fast learner AI agent (because of the simpler structure
of VGG16) and represent this family by (16, 16, 16, s, t),
where s = 10, 000 data points (or images) and t = 3 epochs.
The architecture of a VGG16 model is presented in Figure
2 that shows it has 13 convolutional layers, 5 max pool-
ing layers, and 3 fully connected layers. In our proposed
framework, we represent this architecture by a set of triplets
{(1, 2, 64), (2, 2, 128), (3, 3, 256), (4, 3, 512), (5, 3, 512)}.
Hence, the VGG16 model architecture is parameterized by
the triplet representation (a, b, c), where a represents a con-
volutional learning step, b represents a knowledge module,
and c represents the dimensionality of the knowledge.

Detailed learners They need more data and more time to
learn. In other words, they are detail-oriented models; hence,
they perform well with complex data than simple data. Thus,
they require larger dataset than the one required by the fast
learners to perform efficiently. Since VGG19 consists of
3 more convolutional layers than VGG16, we map an AI
agent generated from VGG19 to a detailed learner and rep-
resent this detailed learner family by (19, 19, 19, s, t), where
s ≥ 10, 000 and t = 3. The VGG19 architecture may also
be described using a set of triplets {(1, 2, 64), (2, 2, 128),
(3, 4, 256), (4, 4, 512), (5, 4, 512)}, by following the same
logic used to describe the fast learner architecture in Fig-
ure 2. Hence, the same parametrized triplet representation
(a, b, c) holds. In the set of triplets, for example, (3, 4, 256)
describes the third convolutional learning step, its fourth
knowledge module, and 256 knowledge dimensionality.
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Organized learners The organized learners may not need
more data to learn; however, they require more time to
learn. In other words, they perform well with both complex
and simple data through an organized structure that requires
longer training time than other two types of learners.
Since ResNet50 consists of more convolutional layers
than VGG16 and VGG19 models and focuses on gradient,
we can map an AI agent of ResNet50 to an organized
learner and represent the family by (50, 50, 50, s, t), where
n = 10, 000 and t = 7. The ResNet50 architecture may be
described by combining a triplet and a set of hierarchical
triplets as follows: {(1, 2, 64), (2, 1 . . . 3, (64, 64, 256)),
(3, 1 . . . 4, (128, 128, 512)), (4, 1 . . . 6, (256, 256, 1024)),
(5, 1 . . . 3, (512, 512, 2048))}. Hence, the ResNet50 model
architecture is parameterized using the hierarchical triplet
representation (a, b, (c, d, e)), where a represents a convo-
lutional learning step, b represents a residual learning step
within a convolutional learning step, and (c, d, e) represents
the dimensionalities of knowledge module as a triplet, c,
d, and e. Therefore, for example, to access the second
knowledge module of the second residual learning step at
the fourth convolutional learning step, we represent it by
(4, 2, (−, 256,−)). The purpose of introducing this repre-
sentation is to facilitate the knowledge sharing mechanism
and select the correct weights based on the dimensionality
of knowledge by accessing the correct knowledge module.

Intra-marriage of AI The intra-marriage of AI refers to
the process of knowledge sharing between the parent-AI
agents of the same learner type to produce a child-AI agent
of the same learner types with a new knowledge. The con-
cept of marriage of AI agents (intra or inter) first modifies
the fully connected layer such that it supports the learning
logic (fast, detailed, and organized) and prepares parent-AI
agents to produce a child-AI agent to perform a new task.
This process helps establish a new memory for a child agent.
In addition, the other layers, as defined in previous sec-
tions, of the parent models carry their intermediate learning
steps and knowledge modules with their weights and biases.
Hence, these learning experiences will be transferred to the
child-AI agent by sharing these parameters and forming a
family of a learner type (fast, detailed, or organized).

Mixture-model colony of AI
The purpose of mixture-model colony of AI is to enhance di-
versity and quality of the colony of AI by proposing the con-
cept of intermarriage between the agents of distinct models.
In a mixture-model colony of AI (Figure 1), the differences
in the model architecture between the parent models create
challenges in finding a mechanism for knowledge sharing.
This is where, our triplet and hierarchical triplet represen-
tations contribute. An advantage of mixture model is that it
automatically permits to have two types of child-AI agents
based on the distinct types of the parent-AI agents. This fea-
ture helps increase the diversity and quality of the AI colony.

Fast learner and Detailed learner The marriage between
a fast learner AI agent and a detailed learner AI agent brings
a problem that is introduced by the requirement of a larger
datasets by the detailed learners. The sharing of learned

weights and biases should also be carefully addressed to
overcome the problems induced by the misalignment of lay-
ers of these two distinct models and the learning strategy
(vanishing gradient) (Hochreiter 1998). In this scenario, the
parent-AI agents can have two child-AI agents and con-
tribute to the increased diversity and quality in the AI colony.
A fast learner parent-AI agent and a detailed parent-AI agent
share their knowledge via the concept of intermarriage of
AI agents, and produce a fast learner child-AI agent and
a detailed learner child-AI agent. Therefore, with this con-
cept and the proposed triplet knowledge representation, the
parent-AI agents can share their knowledge modules, for
example, (3, 3, 256) of VGG16, and (3, 4, 256) of VGG19
and (5, 3, 512) of VGG16 and (4, 4, 512) of VGG19 with
the rule of 50% (probabilistic rule) knowledge sharing (GA
crossover) to produce child-AI agents (GA mutation).

Fast learner and Organized learner The marriage be-
tween a fast learner AI agent and an organized learner AI
agent brings different challenges that are imparted from the
requirement of longer training time by the organized learn-
ers. Once again the sharing of learned knowledge modules
should be carefully addressed to overcome the problems
caused by the misalignment of layers of these two distinct
models. The parents can also have two child-AI agents and
increase diversity and quality, since they can produce one
fast learner and one organized learner child-AI agents.

A fast learner parent-AI agent and an organized learner
parent-AI agent also share their knowledge via the inter-
marriage concept, and produce a fast learner child-AI agent
and an organized child-AI agent. Hence, with this con-
cept and the triplet and hierarchical triplet knowledge rep-
resentations, the parent-AI agents can share their knowledge
modules, for example, (4, 2, (−, 256,−)) of ResNet50 and
(3, 3, 256) of VGG16, and (5, 2, (−, 512,−)) of ResNet50
and (5, 3, 512) of VGG16 with the previously used rule of
50% knowledge sharing to produce child-AI agents.

Detailed learner and Organized learner In this case
a detailed learner and organized learner parent-AI agents
also share their knowledge through the concept of intermar-
riage of AI agents to produce a detailed child-AI agent and
an organized child-AI agent. Therefore, with this concept
and the proposed triplet and hierarchical knowledge repre-
sentations, the parent-AI agents can share their knowledge
modules (4, 2, (−, 256,−)) of ResNet50 and (3, 4, 256) of
VGG19, and (5, 2, (−, 512,−)) of ResNet50 and (4, 4, 512)
of VGG19 with the 50% sharing rule (crossover by GA) and
produce child-AI agents by using mutation operation of GA.

Diversity-Quality trade-off estimator
The trade-off between diversity and quality is an important
factor to consider for measuring the effectiveness of a colony
of AI agents as a single system. Our proposition is to use the
combined effect of pairwise disagreement score, system en-
tropy score, accuracy variance score, Mean Kendall’s Tau
and standard deviation of Kendall’s Tau on the grid of accu-
racy values of the models and the number of labels to pre-
dict. Let us assume that we have p models {a1, a2, . . . , ap}
and k labels {r1, r2, . . . , rk}. Then we have a grid of p × k
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Family Dig. 0 Dig. 1 Dig. 2 Dig. 3 Dig. 4 Dig. 5 Dig. 6 Dig. 7 Dig. 8 Dig. 9 Avg.

F(16, 16, 16, 10k, 3) 0.95 0.98 0.92 0.98 0.95 0.95 0.92 0.90 0.88 0.86 0.93
F(19, 19, 19, 10k, 3) 0.49 0.98 0.85 0.94 0.94 0.63 0.73 0.93 0.58 0.92 0.82
F(50, 50, 50, 10k, 7) 0.97 0.99 0.98 0.98 0.98 0.93 0.97 0.95 0.85 0.93 0.95
F(16, 19, 16, 10k, 3) 0.95 0.98 0.91 0.95 0.97 0.87 0.94 0.95 0.85 0.93 0.93
F(16, 16, 19, 10k, 3) 0.96 0.95 0.85 0.77 0.93 0.70 0.86 0.90 0.77 0.93 0.87
F(16, 50, 16, 10k, 3) 0.95 0.99 0.89 0.87 0.96 0.91 0.85 0.92 0.90 0.91 0.92
F(16, 50, 50, 10k, 7) 0.88 0.86 0.84 0.90 0.62 0.83 0.87 0.89 0.91 0.68 0.82
F(19, 50, 19, 10k, 3) 0.80 0.98 0.91 0.84 0.95 0.77 0.80 0.95 0.85 0.93 0.89
F(19, 50, 50, 10k, 7) 0.96 0.98 0.86 0.78 0.93 0.86 0.96 0.91 0.94 0.89 0.90

Table 1: F1 scores of the models to predict each class from the first set of simulations

accuracy (F1-scores) values for the predictive performance
of p models for each label riin{r1, r2, . . . , rk} . For exam-
ple, in our approach, we have 9 models and 10 hand-written
digits (labels 0 to 9) to predict (e.g., Table 1).

To make the decision of diversity is much stronger,
we also use Kernel density estimation (KDE) (Weglarczyk
2018). We know the accuracy is evolved through many ran-
dom processes, model parameters, model optimization pro-
cesses, switching of learned parameters (weight and biases);
hence, we can assume each accuracy values is a random vari-
able. Therefore, our goal is to estimate their probability den-
sity function and generate their corresponding kernel density
estimators. This process confirms the origin of the accuracy
values; hence, it’s use can provide a meaningful and gener-
alized interpretation for the diversity and quality trade-off.

Results
Simulations have been conducted to validate the proposed
concept of colony of AI that consists of both multi-model
families of AI agents and mixture-model families of AI
agents. A subset of the well-known MNIST dataset (LeCun
et al. 1998) and the VGG16, VGG19, and ResNet50 models
for this validation purpose. We have constrained the MNIST
dataset to 10000 images (or data points) for training and
2000 images for testing and analyzed the predictive perfor-
mance of the models in terms of predicting 10 hand-written
digits in the MNIST dataset.

Results from multi-model colony of AI
This section presents the results from the simulations
that analyze the performance of the proposed multi-model
colony of AI agents that consists of the families of fast
learner, detailed learner, and organized learner agents as-
sociated with the VGG16, VGG19 and ResNet50 models,
along with the constrained-MNIST dataset.

Intra-marriage VGG16 AI agents. This simulation
demonstrates that the child-AI agents produced by two
VGG16 (fast learner) parent-AI agents display strong pre-
dictive performance on a constrained-MNIST dataset, even
when more detailed of the data characteristics are not avail-
able. The F1-scores for this family are presented in the first
row of Table 1 as performance measures (Suthaharan 2016;
Powers 2020). These values show that the model (16,16,16)
display very good performance in predicting the digits. In

addition, the Receiver Operating Characteristic (ROC) curve
presented in Figure 3(a) also supports that the model will
give an excellent performance probabilistically, if additional
data points are provided (Fawcett 2006; Powers 2020).

Intra-marriage VGG19 AI agents. We can observe from
this simulation that the child-AI agents produced by two
VGG19 (detailed learner) parent-AI agents may perform
strong on some digits, but not for all. The values of the F1-
scores for this family are presented in the second row of Ta-
ble 1. This is expected, as we mentioned before, because the
extra layers of a VGG19 model (than VGG16 model) need
additional data to extract detailed information for learning.
We can also see from ROC curves presented in Figure 3(b)
that the model can show excellent performance.

Intra-marriage ResNet50 AI agents. We have also con-
ducted a simulation to show that the child-AI agent produced
by two ResNet50 (organized learner) parent-AI agents can
give significantly higher performance than the other two
models. The F1-scores of this family are presented in the
third row of Table 1. However, it requires more training time.
In other words, we need to increase the number of epochs so
that the ResNet50 models can focus more on the learning
behavior (gradient). It means that ResNet50 requires addi-
tional time to address the vanishing gradient problem. The
ROC results in Figure 3(c) show excellent performance.

Collective performance. In summary, by considering the
F1-scores in the first, second, and third rows of Table 1, we
can determine that the predictive performance of these mod-
els is diversified with good quality. The values show that the
presence of model diversity in a colony of AI supports the
task accomplishment. As an example, the low prediction ac-
curacy of VGG19 on digit 0 does not matter to the overall
performance of the colony since the collective decision sug-
gests that an excellent prediction digit 0 can be achieved by
VGG16 and ResNet50. Similar pattern can be seen in the
prediction of digits 5 and 8. However, we observed sepa-
rately that the performance of VGG19 can be improved to
the level of VGG16 and ResNet50 with extra 2000 images.

Results from mixture-model colony of AI
This section presents the results of a set of simulations
that analyze the performance of the colony of AI agents
that consists of the mixture-model families of fast (VGG16)
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Figure 3: The results of ROC curves for the multi-model family of AI from the second set of simulations.

Figure 4: The results of ROC curves for the mixture-model family of AI from the third set of simulations.

and detailed (VGG19) learners, fast (VGG16) and orga-
nized (ResNet50) learners, and detailed (VGG19) and or-
ganized (ResNet50) learners with the same constrained-
MNIST dataset that was used in the previous simulations.

Intermarriage, fast and detailed learners. The purpose
of this simulation is to show that the child-AI agents pro-
duced by the fast and the detailed parent-AI agents through
the concept of intermarriage display very good performance.
These parent-AI agents can produce a fast learner child-
AI agent (VGG16) and a detailed learner child-AI agent
(VGG19). The F1-scores of these child-AI agents are pre-
sented in the fourth and fifth rows of Table 1. By comparing
these scores and the scores in rows one and two, we can see

that the performance of VGG16 child is still very strong,
while the performance of VGG19 has been improved be-
cause of the intermarriage between the fast and the detailed
learners. In addition, the ROC curves in Figures 4(a) and (b)
also support that the models can achieve excellent perfor-
mance with additional data points.

Intermarriage, fast and organized learners. This simu-
lation is to show that the child-AI agents produced by the
fast and organized parent-AI agents, through the concept of
intermarriage, perform very good but with some deficien-
cies. In this scenario, the parent-AI agents produce a fast
learner child-AI agent (VGG16) and an organized learner
child-AI agent (ResNet50). The F1-scores of these child-AI
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Figure 5: The diversity and quality plots for the models.

agents are presented in the sixth and seventh rows of Ta-
ble 1. If we now compare these scores with the scores in
rows one and three, we can say that the performance of the
organized learners is slightly negatively influenced by the
fast learner through intermarriage between the fast and or-
ganized learner agents. From the ROC curves presented in
Figures 4(c) and (d), we can determine that excellent mod-
els’ performance can be achieved with additional epochs.

Intermarriage, detailed and organized learners. This
simulation is to show that the child-AI agents produced by
the detailed and organized parent-AI agents, through the
concept of intermarriage, also perform very good. In this
scenario, the parent-AI agents produce a detailed learner
child-AI agent (VGG19) and an organized learner child-AI
agent (ResNet50). The F1-scores of these child-AI agents
are presented in the eighth and ninth rows of Table 1. If we
now compare these scores with the scores in rows two and
three, we can say that the performance of the detailed and or-
ganized learners is balanced. It is clear from the ROC curves
in Figures 4(e) and (f) that we can achieve excellent models’
performance with additional data points and epochs.

Comprehensive analysis. A set of results for comprehen-
sive analysis is presented in Table 2. It provides average
F1 scores for training, validation, test performance, and the
training time (epochs) of the 9 child-AI models, resulted
from the intra- and inter-marriages between AI agents. We
can see that the intra-marriage between two organized learn-
ers (ResNet50) that produces an organized child-AI agent
(ResNet50) gives the best performance. However, overall the
models’ performance are very good (over 82%), indicating
diversity and quality. As discussed before, organized learn-
ers also need extra learning time to perform better. Note that
we can achieve very high performance on all models with an
increase in the number of data points and the training time.

Diversity and quality
Figure 5 shows the visual representation of the data in Table
1. It shows quality of the predictive behavior of the 9 inher-
ited child-AI models using their prediction accuracy for the
10 digits (0 to 9) in 10 colors. Although we see diversity

Models Train. Valid. Test Duration
(16,16,16,10k,3) 0.94 0.95 0.93 443 sec.
(19,19,19,10k,3) 0.79 0.83 0.82 592 sec.
(50,50,50,10k,7) 0.99 0.96 0.95 713 sec.
(16,19,16,10k,3) 0.95 0.95 0.93 442 sec.
(16,19,19,10k,3) 0.83 0.88 0.87 591 sec.
(16,50,16,10k,3) 0.91 0.94 0.92 440 sec.
(16,50,50,10k,7) 0.97 0.84 0.82 724 sec.
(19,50,19,10k,3) 0.82 0.90 0.89 613 sec.
(19,50,50,10k,7) 0.96 0.92 0.90 732 sec.

Table 2: The performance results for different AI families

in the results of the models, it is essential to have numer-
ical descriptors for the diversity. Hence we calculated the
pairwise disagreement score (0.085), system entropy score
(2.30), accuracy variance Score (0.007), mean Kendall’s Tau
(0.25), and standard deviation of Kendall’s Tau: (0.27). The
accuracy variance score of 0.007 indicates that the models
display diversified performance in predicting digits (Hansen
and Salamon 1990); hence, it can contribute to the collective
decision-making strategy. The mean Kendall’s Tau value of
0.25 indicates that the models are not uniformly favoring
the digits in predictive results (Kendall 1938); hence, they
show diversity behavior. These patterns can be seen in Fig-
ure 5 which we can now interpret numerically. Similarly
other measures also supporting diversity and quality of the
models. We also used the KDE approach with exponential
kernel and obtained the following results: pairwise disagree-
ment score (0.084), system entropy score (2.28), accuracy
variance Score (0.007), mean Kendall’s Tau (0.58), and stan-
dard deviation of Kendall’s Tau: (0.35). Hence, these results
of a non-parametric approach also show similar diversity.

Conclusion
This research has shown that our proposition of building a
colony of AI with multi-model and mixture-model families
of AI agents can lead to an AI system that resembles the
behavior of a biological colony. As demonstrated by a lim-
ited set of simulations, we can see that the mapping of the
pretrained VGG16, VGG19, and ResNet50 models to a fast
learner AI agent, a detailed learner AI agent, and an orga-
nized learner AI agent helps to build a colony of AI that can
make collective decisions by sharing their locally learned
knowledge. The novel representation of the AI models us-
ing triplets and hierarchical triplets, together with Genetic
Algorithms, opens up a new research direction to under-
stand the knowledge mechanism of the AI models. The use
of fast learner AI agents, detailed learner AI agents, and or-
ganized learner AI can also help us enhance the diversity
and the quality of a colony of AI. Hence, the proposed con-
cept of colony of AI can help advance the emerging research
in multi-agent AI systems. The next step of our research is
to perform additional simulations with more complex, real-
world datasets and compare with traditional multi-agent AI
systems to support our conclusions. This research will also
be extended to develop an explainable colony of AI system.
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